Return to search

Contribution à la modélisation des dispositifs MOS haute tension pour les circuits intégrés de puissance ("Smart Power")

Au cours des dernières décennies, les circuits intégrés de puissance ont connu une croissance très importante. Aujourd'hui la régulation et distribution d'énergie électrique jouent un rôle crucial. La réduction constante des dimensions ainsi que le besoin en densité de puissance de plus en plus élevée ont mis en évidence la nécessité de structures toujours plus performantes. La technologie "smart power" a été développée pour satisfaire ces demandes. Cette technologie utilise les dispositifs DMOS, offrant de nouvelles solutions grâce à ses caractéristiques uniques forte tension et fort courant. Le fonctionnement de ces dispositifs est accompagné par l'apparition de nombreux phénomènes. Une bonne modélisation permet de rendre compte de ces phénomènes et prédire le comportement physique du transistor avant sa production. L'objectif de cette thèse était donc d'améliorer la modélisation et de mettre en place une méthode d'extraction de certains paramètres physiques liés au fonctionnement du MOS HV (High Voltage). Cette thèse a été principalement dédiée à la modélisation du phénomène de l'auto-échauffement et à la définition d'une méthode d'extraction des parasites RF dans les transistors MOS et, enfin, à la comparaison du macro-modèle utilisé par STMicroelectronics avec le modèle compact HiSIM_HV dédié au MOS HV. Pour cela, il était essentiel de mettre en place des nouvelles procédures de modélisation et d'extraction et de dessiner des structures de test spécifiques. Les résultats présentés dans cette thèse ont été validés par différentes comparaisons avec les mesures en technologies sur SOI et sur substrat massif.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00581114
Date21 December 2010
CreatorsHniki, Saadia
PublisherUniversité Paul Sabatier - Toulouse III
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
TypePhD thesis

Page generated in 0.002 seconds