Return to search

Estudos in vitro e in vivo dos mecanismos pelos quais nitróxidos cíclicos inibem lesões oxidativas / In vitro and in vivo studies of the mechanisms by which cyclic nitroxides inhibit oxidative damage.

Tempol (4-hidroxi-2,2,6,6-tetrametil piperidina-1-oxil) e outros nitróxidos cíclicos reduzem a injúria tecidual em modelos animais de inflamação por mecanismos que não são completamente entendidos. A mieloperoxidase (MPO) tem um papel fundamental na produção de oxidantes por neutrófilos e, portanto, é um importante alvo para anti-inflamatórios. Ao amplificar o potencial oxidativo do H2O2, a MPO produz HOCl e radicais livres através de seus intermediários oxidantes MPO-I [MPO-porfirina•+-Fe(IV)=O] e MPO-II [MPO-porfirina-Fe(IV)=O]. Esses fatos nos levaram a sintetizar e avaliar a capacidade inibitória sobre a atividade clorinante da MPO in vitro e in vivo do tempol e de três derivados hidrofóbicos substituídos na posição 4 do anel piperidina [(4-azido, 4-benzenosulfonil e 4-(4-fenil-1H-1,2,3-triazol-1-il)]. In vitro, todos os nitróxidos inibiram a clorinação da taurina mediada pela MPO a pH 7,4 com valores similares de IC50 (1,5-1,8 µM). As constantes cinéticas das reações do tempol com MPO-I (k = 3,5 x 105 M-1 s-1) e MPO-II, cuja cinética indicou um comportamento de saturação (K= 2,0 x 10-5 M; k = 3,6 x 10-2 s-1), foram determinadas. Modelagens cinéticas indicaram que, em presença de taurina, MPO não produz HOCl livre. Tomados conjuntamente, os resultados indicaram que o tempol age principalmente como um inibidor reversível da MPO por levar ao acúmulo de MPO-II e de complexo [MPO-II-tempol] que não participam do ciclo clorinante. Para examinar se nitróxidos inibem a atividade da MPO in vivo selecionamos como modelo a inflamação aguda induzida pela carragenina na pata de ratos. A atenuação da inflamação na pata mostrou correlação com a lipofilicidade do nitróxido em tempos iniciais, mas as diferenças nos efeitos foram pequenas (menor que 2 vezes) quando comparadas com as diferenças de lipofilicidade (maior que 200 vezes). Nenhuma inibição da atividade da MPO foi evidente in vivo porque os níveis de atividade nas patas dos ratos correlacionaram com os níveis de MPO. Do mesmo modo, em animais não-tratados ou tratados com nitróxidos, todos os parâmetros empregados para monitorar a inflamação (edema, níveis de proteínas oxidadas e nitradas e exsudação plasmática) correlacionaram com os níveis de MPO. Os efeitos dos nitróxidos in vivo foram também comparados com aqueles da hidrazida do ácido 4-aminobenzóico (ABAH) e da colchicina. Tomados conjuntamente, os estudos in vivo indicaram que os nitróxidos atenuam a inflamação induzida pela carragenina principalmente por inibirem a migração celular. De acordo com essa conclusão, estudos in vivo, mostraram que tempol diminuiu a migração de neutrófilos humanos e de cultura (HL-60 diferenciadas em neutrófilos) ativados com PMA ou fMLP com IC50 25 µM. Nesse caso, a polimerização da actina é inibida apenas quando as células são pré-incubadas com tempol por 30 min. Nesse intervalo de tempo, o tratamento com tempol promove a formação de O2•- via flavoenzimas de maneira dependente da concentração. Subsequente ativação dos neutrófilos de cultura com PMA resulta também em produção intracelular de O2•- e H2O2 que é inibida pelo pré-tratamento com tempol (IC50 = 38 µM). Esses estudos preliminares sugerem que o tempol interfere na migração celular de neutrófilos por atenuar a formação intracelular de ROS. A importância da atividade peroxidásica da superóxido dismutase (hSOD1) in vivo é certamente muito mais restrita do que a da MPO em processos inflamatórios no geral. Todavia, essa atividade peroxidásica da hSOD1 pode ter um papel na na patogenia da esclerose lateral amiotrófica (ELA). Por essa razão, os efeitos do tempol sobre as consequências da atividade peroxidásica da hSOD1 (oxidação, dimerização, desenovelamento e agregação da enzima) também foram examinadas. Foi demonstrado que o tempol não interfere no ciclo catalítico da hSOD1, porém, inibe a dimerização da enzima, protegendo-a de desenovelamento e agregação. O nitróxido foi consumido no processo reagindo com o radical triptofanila no peptídeo 31VWGSIK36 como comprovado por MS. No conjunto, nossos estudos contribuem para esclarecer os múltiplos mecanismos pelos quais nitróxidos podem inibir processos oxidativos e inflamatórios. / Tempol (4-hydroxy-2 ,2,6,6-tetramethyl piperidine-1-oxyl) and other cyclic nitroxides reduce tissue injury in animal models of inflammation by mechanisms that are not fully understood. Myeloperoxidase (MPO) plays a key role in the production of oxidants by neutrophils and therefore is an important target for anti-inflammatory drugs. By amplifying the oxidative potential of H2O2, MPO produces HOCl and free radicals through its oxidizing intermediates MPO-I [MPO-porphyrin•+-Fe (IV)=O] and MPO-II [MPO-porphyrin-Fe (IV)=O]. In this context, we synthesized tempol and three more hydrophobic derivatives substituted in position 4 of the piperidine ring [(4-azido-4 benzenesulfonyl and 4-(4-phenyl-1H-1,2,3-triazol-1-yl)] and evaluated their ability to inhibit the chlorinating activity of MPO in vitro and in vivo. In vitro, all the nitroxides inhibited the chlorination of taurine mediated by MPO at pH 7.4 with similar IC50 values (1.5 to 1.8 µM). The kinetic constants of the reactions of tempol with MPO-I (k = 3.5 x 105 M-1 s-1) and MPO-II, whose kinetic indicated a saturation behavior (K = 2.0 x 10-5 M; k = 3.6 x 10-2 s-1), were determined. Kinetic modeling indicated that in the presence of taurine, MPO does not produce free HOCl. Taken together, the results indicated that tempol acts primarily as a reversible inhibitor of MPO leading to accumulation of MPO-II and of the complex [MPO-II-tempol], which do not participate within chlorinating cycle. To examine whether nitroxides inhibit the activity of MPO in vivo, the acute inflammation induced by carrageenan in the rat paw was selected as model. The attenuation of inflammation in paws was correlated with the lipophilicity of the nitroxide in early times, but the differences in effects were small (less than 2-fold) when compared to the differences in lipophilicity (higher than 200 times). No inhibition of MPO activity was evident because the levels of activity in rat paws correlated with the levels of MPO. Similarly, in animals not treated or treated with nitroxides, all parameters used to monitor inflammation (swelling, levels of oxidized and nitrated proteins and plasma exudation) correlated with the levels of MPO. The effects of nitroxides in vitro were also compared with those of 4-aminobenzoic acid hydrazide (ABAH) and colchicine. Taken together, the in vivo studies indicated that nitroxides attenuate carrageenan-induced inflammation mainly by inhibiting cell migration. According to this conclusion, in vitro studies showed that tempol decreased migration of human and culture neutrophils (HL-60 differentiation to neutrophils) activated with PMA or fMLP with IC50 = 25 µM. In this case, actin polymerization is inhibited only when cells are preincubated with tempol for 30 min. During this time interval, treatment with tempol promotes the formation of O2•- via flavoenzymes in a concentration-dependent manner. Subsequent activation of culture neutrophils with PMA also results in intracellular production of O2•- and H2O2, which is inhibited by pretreatment with tempol (IC50 = 38 µM). These preliminary studies suggest that tempol interfere in neutrophil chemotaxis by attenuating the formation of intracellular ROS. The relevance of the peroxidase activity of superoxide dismutase (hSOD1) in vitro is certainly much narrower than that of MPO. Nevertheless, this peroxidase activity may have a role in the pathogenesis of amyotrophic lateral sclerosis (ALS). Therefore, the effects of tempol on the consequences of the hSOD1 peroxidase activity (oxidation, dimerization, unfolding and aggregation of the enzyme) were also examined. Tempol inhibited the dimerization of hSOD1, protecting it from unfolding and aggregation, but not interfered in its catalytic cycle. The nitroxide was consumed in the process by reacting with the tryptophanyl radical of the segment 31VWGSIK36 as evidenced by MS. Overall, our studies contribute to clarify the multiple mechanisms by which nitroxides can inhibit oxidative and inflammatory processes.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-13052013-090032
Date08 October 2012
CreatorsRaphael Ferreira Queiroz
ContributorsOhara Augusto, Ana Campa, Alicia Juliana Kowaltowski, Lucia Rossetti Lopes, Flavia Carla Meotti
PublisherUniversidade de São Paulo, Ciências Biológicas (Bioquímica), USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0128 seconds