Nanomedicine is based primarily on the concept of drug formulation through nanotechnology. The main idea is based on the encapsulation of an active ingredient by a nanoparticle (NP) to allow it to accumulate in tumors, to penetrate a biological barrier or to target a biological component. However, the performance of these formulations is disappointing, and, in recent years, it has been noticed that their effectiveness has not improved in the last decade. Some recent hypotheses highlight our lack of knowledge about the interactions of nanotechnologies with living organism and more particularly the lack of techniques to quantify these interactions.
We therefore explore in this thesis the development and adaptation of a new microscopy technique, dynamic differential microscopy (DDM), to study the interactions of nanotechnologies with biological matrices. Two subjects are discussed, the first on the interactions of NPs with the proteins of biological fluids and, the second one, on the capacity of NPs to diffuse in interstitial tissues.
First, we reviewed quantification techniques that were allowing the measurement of protein adsorption at the surface of NPs. We then identified fundamental questions of this adsorption, namely, if it was generally structured in monolayers or in multilayers and if it was reversible or irreversible. A meta-analysis, based on these questions, could therefore guide the development of the DDM technique to measure protein adsorption and therefore answer these questions. The methodology proposed for the quantification of protein adsorption is based on the measurement of the fluorescence signal which comes from fluorescently tagged proteins adsorbed on non-fluorescent NPs. This methodology was successfully applied for the quantification of the adsorption of lysozyme, albumin and serum proteins. The technique demonstrated that all the proteins studied adsorbed in monolayers and that their adsorption was reversible. An atypical adsorption mechanism which was also hypothesized in our meta-analysis was evidenced by DDM as well.
Next, we applied DDM to study the diffusion of NPs in extracellular matrices. The contribution of deformability has been a parameter studied in terms of its relation to improve their diffusion within these confined environments. The diffusion of "soft" NPs was compared to that of "hard" NPs in an agarose gel, mimicking the extracellular matrix. Soft NPs have been observed to diffuse up to 100 times faster than hard NPs of the same size. Evaluation of the hydrodynamic and electrostatic contributions determined that the soft NPs shrinks in the gel, boosting their diffusion in comparison to hard NPs.
In summary, this work highlights the important contribution of analytical techniques to the field of nanotechnologies applied to pharmacy and to our understanding of their interactions with living organisms. It is clear that the contribution of these techniques to our detailed understanding of nanomedicine properties has a direct relation with their clinical translation potential. / La nanomédecine repose essentiellement sur le développement de nouvelles formulations pour délivrer les médicaments à partir de nanotechnologies. L’idée principale est que l’encapsulation d’un principe actif par une nanoparticule (NP) pourrait lui permettre de s’accumuler dans des tumeurs, de pénétrer une barrière biologique ou bien pour cibler une composante biologique. Or, les performances de ces « nano-formulations » sont décevantes et, depuis quelques années, il a été remarqué que leur efficacité ne semble pas avoir évoluée dans le temps. De récentes hypothèses mettent de l’avant notre manque de connaissances vis-à-vis les interactions des nanotechnologies avec les éléments du vivant, et plus particulièrement, le manque de techniques robustes permettant de quantifier ces interactions.
Nous proposons donc dans cette thèse le développement et l’adaptation d’une nouvelle technique de microscopie, la microscopie différentielle dynamique (DDM), pour étudier les interactions entre les nanotechnologies et les matrices biologiques. Deux thématiques seront abordées, la première, les interactions des NPs avec les protéines des fluides biologiques et, la seconde, la capacité des NPs à diffuser dans des tissus interstitiels.
D’abord, nous avons revus les techniques de quantification permettant la mesure de l’adsorption de protéines à la surface des NPs. Nous avons ensuite identifié les questions fondamentales en lien avec cette adsorption. Deux phénomènes sont largement débattus dans la littérature, il s’agit de la formation de multicouches et de la réversibilité de l’adsorption. Une méta-analyse a donc permis d’orienter le développement de la technique par DDM pour mesurer l’adsorption de protéines, dans le but de répondre à ces interrogations. La méthodologie proposée pour la quantification de l’adsorption de protéines à la surface des NPs repose sur la mesure du signal de fluorescence de protéines fluorescentes adsorbées à la surface des NPs non fluorescentes. Cette méthodologie a été appliqué avec succès pour la quantification de l’adsorption des protéines du sérum, du lysozyme et de l’albumine. La technique a d’ailleurs permis de montrer que toutes les protéines étudiées s’adsorbaient en monocouches et que leur adsorption était réversible. Un mécanisme d’adsorption atypique a été mis en évidence dans le cadre de nos expériences et un parallèle a pu être fait avec certaines hypothèses émises avec notre méta-analyse.
Ensuite, nous avons appliqué la DDM pour l’étude de la diffusion des NPs dans des matrices extracellulaires. La déformabilité des NPs a été étudiée afin de définir plus précisément sa contribution dans la diffusion à l’intérieur de milieux confinés. La diffusion des NPs « molles » a été comparée à celle des NPs « dures » dans un gel d’agarose, mimant la matrice extracellulaire. Les NPs molles ont été en mesure de diffuser jusqu’à 100 fois plus rapidement que les NPs dures de même taille. L’évaluation des contributions hydrodynamiques et électrostatiques a permis de déterminer que la taille des NPs molles, réduisant dans le gel, leur accordant un avantage diffusif par rapport aux NPs dures.
En sommes, ces travaux ont permis de mettre en évidence l’importance des techniques analytiques pour l’étude des nanotechnologies appliquées à la médecine et pour affiner notre compréhension de leurs interactions avec le vivant. Il est clair que la contribution de ces techniques à l’avancement de nos connaissances théoriques relatives aux nanotechnologies aura un impact direct sur leurs chances d’effectuer une transition vers la clinique.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/26978 |
Date | 08 1900 |
Creators | Latreille, Pierre-Luc |
Contributors | Banquy, Xavier, Hildgen, Patrice, Martinez, Vincent A. |
Source Sets | Université de Montréal |
Language | fra |
Detected Language | French |
Type | thesis, thèse |
Format | application/pdf |
Page generated in 0.0031 seconds