Eine Reihe wichtiger Wachstums- und Integrationsaspekte von Kohlenstoff-Nanoröhren wurde im Rahmen dieser Arbeit untersucht. Der Schwerpunkt der experimentellen Arbeit lag dabei hauptsächlich bei einschaligen Kohlenstoffnanoröhren (SWCNT). Das große Potential dieser Nanoröhren für Transistor-Anwendungen wurde durch die Herstellung einer Vielzahl funktionierender Bauelemente aus diesen Kohlenstoffnanoröhren mittels relativ einfacher Herstellungsprozesse demonstriert. Ein fundiertes Verständnis für die Abhängigkeiten des Nanoröhrenwachstums von einer Vielzahl an Parametern wurde mit Hilfe mehrerer tausend Wachstumsexperimente gesammelt. Verschiedene Katalysatormetalle, Kohlenstoffquellen und Katalysatorunterlagen wurden detailliert untersucht. Ein Hauptaugenmerk wurde dabei auf eine Reduzierung der Wachstumstemperatur gerichtet. Die niedrige Wachstumstemperatur spielt eine große Rolle für eine möglichst hohe Kompatibilität mit konventionellen Herstellungsverfahren der Silizium-Halbleitertechnik. Ein einfaches phänomenologisches Wachstumsmodell wurde für die Synthese von Nanoröhren mittels katalytisch-chemischer Gasphasen-Abscheidung (CCVD) formuliert. Dieses Modell basiert hauptsächlich auf der Oberflächendiffusion von adsorbierten Kohlenstoffverbindungen entlang der Seitenwände der Nanoröhren sowie auf der Oberfläche der Katalysatorunterlage. Das Modell ist eine wichtige Ergänzung zu dem VLS-Mechanismus. Ein Wachstumsverfahren zur Herstellung von Nanoröhren für niedrigere Temperaturen bis zu 600 °C wurde entwickelt. Experimentell wurde nachgewiesen, dass der Durchmesser des Katalysatorteilchens fast ausschließlich bestimmt, wie viele Schalen eine wachsende Nanoröhre bei geeigneten Wachstumsbedingungen hat. Es wurde zum ersten Mal gezeigt, dass einschalige Kohlenstoffnanoröhren auf Metallelektroden wachsen werden können, insofern eine dünne Aluminiumschicht als Trennschicht verwendet wird. Dadurch können in-situ kontaktierte Nanoröhren einfach hergestellt werden, was deren elektrische Charakterisierung weitaus erleichtert. Mittels stromloser Abscheidung von Nickel oder Palladium aus einer Lösung konnte eine deutliche Verbesserung der Kontaktwiderstände der in-situ-kontaktierten Nanoröhren erreicht werden. Durch Einbettung von Nanoröhren in eine Tantaloxidschicht konnten Transistoren mit einem Dielektrikum mit hoher relativer Dielektrizitätskonstante hergestellt werden. Die Tantaloxidschicht wurde mit einem neu entwickelten Tauchprozess abgeschieden. Erstmalig wurden Transistoren basierend auf Kohlenstoffnanoröhren hergestellt, die relativ hohe Ströme (Milliampere) mit einer Modulation bis zu einem Faktor 500 schalten können. Diese Transistoren beruhen auf einer Parallelschaltung einer großen Anzahl an Nanoröhren. Mit Hilfe der hergestellten Transistoren konnten die Eigenschaften einer großen Zahl von Nanoröhren untersucht werden, wobei große Unterschiede in den elektronischen Eigenschaften von metallischen Nanoröhren, halbleitenden Nanoröhren und Nanoröhren mit einer kleinen Bandlücke beobachtet wurden. / A number of very important growth and integration aspects of carbon nanotubes have been investigated during the course of this thesis. The focus was mainly on single-walled carbon nanotubes. Their potential for transistor applications was demonstrated by the successful fabrication of a variety of devices using rather simple processes. A detailed understanding of the dependence of SWCNT growth on a variety of parameters was obtained as the result of several thousand growth experiments. Various catalyst materials, gaseous carbon sources, and catalyst supports have been investigated. Special attention was paid to a considerable reduction of the growth temperature. A simple phenomenological growth model could be derived for CCVD of SWCNTs taking into account a number of effects observed during the various growth experiments. The model presented is mainly based on the surface diffusion of carbon species along the sidewalls of the carbon nanotubes or on the catalyst support and is an addition to the vapor-liquid-solid (VLS) mechanism. Growth methods for the CCVD synthesis of SWCNTs were developed for temperatures as low as 600 °C. It has been found that the size of the catalyst particle alone determines whether a SWCNT, DWCNT, or MWCNT will nucleate from a specific particle under suitable growth conditions. It could be demonstrated for the first time that SWCNTs can be grown on a variety of conducting materials if the catalyst is separated from the electrode by a thin Al layer. In-situ contacted SWCNTs can be easily obtained that way, largely facilitating the electronic characterization of as-grown SWCNTs. A tremendous improvement of the contacts of in-situ contacted SWCNTs could be achieved by electroless deposition. SWCNT growth on appropriate electrodes allowed the encapsulation of the nanotubes by electroless deposition of Ni and Pd, yielding good and reliable contacts. SWCNT transistors with a high-k dielectric could be fabricated by encapsulation of the nanotube with a tantalum oxide layer. The tantalum oxide was deposited by a newly developed dip-coat process. High-current SWCNT transistors consisting of a large number of SWCNTs in parallel were demonstrated for the first time during this work. Finally, the properties of a large number of CCVD grown SWCNTs have been investigated by electronic transport measurement. Large differences in the electronic transport have been observed for metallic, small band gap semiconducting (SGS), and semiconducting SWCNTs with small diameters.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:swb:14-1107768324667-82312 |
Date | 01 January 2005 |
Creators | Seidel, Robert Viktor |
Contributors | Technische Universität Dresden, Maschinenwesen, Prof. Dr. rer. nat. habil. Wolfgang Pompe, Prof. Dr. Bernd Büchner, Prof. Dr. rer. nat. habil. Wolfgang Pompe, Dr. Ehrenfried Zschech |
Publisher | Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf |
Page generated in 0.0154 seconds