• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 16
  • 3
  • 3
  • Tagged with
  • 22
  • 22
  • 18
  • 18
  • 16
  • 12
  • 12
  • 12
  • 12
  • 8
  • 6
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Abscheidung von (Kohlenstoff)Nanostrukturen mittels PE-HF-CVD

Pacal, Frantisek 04 December 2006 (has links) (PDF)
Kohlenstoffnanoröhren besitzen eine Reihe von einzigartigen strukturellen, mechanischen und elektronischen Eigenschaften. Sie können in Abhängigkeit von der Chiralität metallisches oder halbleitendes Verhalten zeigen, hohe mechanische, thermische und chemische Stabilität aufweisen, können chemisch funktionalisiert werden und sind hervorragende Elektronenemitter. Vor dem Hintergrund dieser vielversprechenden Eigenschaften wurde schnell die Frage von möglichen technischen Anwendungen von Kohlenstoffnanoröhren gestellt. Vor einer umfassenden kommerziellen Umsetzung sind allerdings noch grundlegende Untersuchungen, sowohl zu den Eigenschaften als auch zu einer gezielten Herstellung und Manipulation, erforderlich. Der Mechanismus des gerichteten Wachstums der Kohlenstoffnanoröhren ist äußerst komplex, weshalb er bis heute nicht völlig aufgeklärt werden konnte. Der Grund liegt in der Vielfalt der möglichen Reaktionen zwischen den Molekülen in der Gasphase, der Wechselwirkung zwischen Gasphase und verwendeten Unterlagen und den Reaktionsmechanismen auf diesen Substratoberflächen. Bislang fehlt es an einem einheitlichen Verständnis des Entstehungsprozesses von Kohlenstoffnanoröhren bzw. –nanostrukturen. Der Schwerpunkt dieser Arbeit liegt in der Abscheidung von Kohlenstoffnanostrukturen mittels plasmaaktivierter und hitzdrahtgestützter chemischen Gasphasenabscheidung -„Plasma enhanced hot filament chemical vapor deposition“ (PE-HF-CVD). Es sollen Abscheidungsbedingungen für die Synthese von unterschiedlichen Kohlenstoffnanostrukturen gefunden und optimiert werden. Die Darstellung und Charakterisierung von „phasenreinen“, mehrwandigen, tubularen Röhren auf unterschiedlichen metallbeschichteten Substraten steht im Vordergrund der Arbeit. Das Interesse besteht in einer Abscheidung bei niedrigen Substrattemperaturen, damit temperaturempfindliche Werkstoffe wie z.B. Glas, als Substratmaterialien eingesetzt werden können. Mittels der PE-HF-CVD Methode, die als vielversprechende Technologie zur Darstellung gerichteter Kohlenstoffnanoröhren gilt, sollen Erkenntnisse zum Einfluss einzelner Abscheidungsparameter auf den Wachstumsprozess von Nanoröhren gewonnen werden, wozu auch die plasmadiagnostische Langmuirsondentechnik und die optische Emissionsspektroskopie (OES) eingesetzt werden. Dadurch soll der Zusammenhang zwischen inneren Plasmaparametern und Wachstumsprozessen der Kohlenstoffnanoröhren oder –fasern definiert werden, um eine Prozesskontrolle während der Abscheidungsphase zu ermöglichen.
2

Bismutbasierte Nanoröhren und mesoskopische Partikel von intermetallischen Phasen des Typs BinM (n = 1 – 4, M = Ni, Rh)

Köhler, Daniel 25 October 2011 (has links) (PDF)
Die grundlegende Frage- bzw. Problemstellung der vorliegenden Arbeit war die Entwicklung innovativer Synthesemethoden für die nanoskalige, anorganische Festkörper- und Materialchemie, sowie die umfassende Charakterisierung der neuartigen Materialien und deren Untersuchung hinsichtlich potentieller Anwendungen. Die Arbeit umfasst dabei zwei große Themengebiete: Das Kapitel Bismutbasierte Nanoröhren beschreibt detailliert die neuartige Synthese doppelwandiger Bismut-Nanoröhren (engl. Double Walled Bismuth Nanotubes, DWBiNTs) bei Raumtemperatur, durch die Umsetzung von Bismutmonoiodid mit n-Butyllithium (n-BuLi) zu elementarem Bismut. Elektronenmikroskopische Untersuchungen des resultierenden feinen schwarzen Pulvers zeigen homogen strukturierte, stark agglomerierte, anisotrope Partikel mit Längen von mehreren hundert Nanometer, welche an den Enden geöffnet vorliegen und zudem einen „zwiebelartigen“ Aufbau mit einem einheitlichen inneren Durchmesser von ca. 4,5 nm sowie einen äußeren Durchmesser von ca. 6 nm aufweisen (Abbildung 1 A – C). Auf Grundlage dieser Erkenntnisse wurden von Rasche quantenchemische Rechnungen am Modell einer (34,0)@(40,0)-DWBiNT durchgeführt, aus denen neben einer hexagonal facettierten Querschnittsgeometrie (Abbildung 1 D) durch Rechnungen der elektronischen Eigenschaften eine direkte Bandlücke von 0,5 eV hervorgeht, womit es sich bei diesen Strukturen um Halbleiter handeln sollte. Im Gegensatz zu bislang bekannten Synthesemethoden für Bi-Nanoröhren kann die in der vorliegenden Arbeit entwickelte Syntheseroute als chemische Top-Down-Bottom-Up-Methode verstanden werden. Hiermit soll die Kaskade des Herauslösens der im Festkörper vorgeprägten Strukturen (chemisch Top-Down) gefolgt von deren Reorganisation zu nanoskopischen Objekten (klassisch Bottom-Up) verdeutlicht werden. Diese Herangehens-weise der Niedertemperaturreduktion klassischer Festkörperverbindungen ist bislang einzigartig und konnte basierend auf den Ergebnissen der vorliegenden Arbeit innerhalb des Arbeitskreises bereits erfolgreich auf intermetallische Phasen übertragen werden. Es konnte ferner gezeigt werden, dass es durch die milde Oxidation von DWBiNTs im O2-Strom möglich ist, unter Erhalt der Morphologie gezielt Nanoröhren der unter Normalbedingungen metastabilen β-Modifikation von Bi2O3 zu synthetisieren. Diese wurden in Zusammenarbeit mit dem Kurt-Schwabe-Institut für Mess- und Sensortechnik e.V. Meinsberg hinsichtlich ihrer gassensitiven Eigenschaften untersucht. Während die oxidischen Nanoröhren keine Sensitivität gegenüber CO und nur eine geringe H2-Sensitivität aufweisen, zeigt sich eine signifikante Widerstandserhöhung mit sinkendem Sauerstoffpartialdruck im Gasgemisch. Diese Befunde zeigen eine mögliche, bislang nicht untersuchte Anwendung von Bi2O3 als Sauerstoffsensor. Das Kapitel Mikrowellenunterstützte Niedertemperatursynthese der vorliegenden Arbeit widmet sich – basierend auf dem Polyolprozess (Abbildung 2) – der zeit- und energieeffizienten Synthese der intermetallischen Phasen BiNi, Bi3Ni und BiRh, welche durch herkömmliche metallurgische Hochtemperaturschmelz- oder sinterprozesse nur schwer zugänglich sind. Besonderer Schwerpunkt liegt in der gezielten Synthese mikro- und nanostrukturierter Proben. Die intermetallische Phase Bi3Ni kann röntgenographisch phasenrein in Form homogener stäbchenförmiger Partikel mit Abmessungen von ca. 200 nm x 600 nm, so genanntes submikroskaliges Bi3Ni, synthetisiert werden (Abbildung 3 A). Ebenso erfolgreich gestaltet sich die Synthese der nickelreicheren Phase BiNi in Form von Nadeln mit Durchmessern von wenigen Nanometern und Längen von mehreren Mikrometern sowie der binären Phase BiRh in Gestalt wohl definierter hexagonal facettierter, plättchenartiger Partikel mit einem mittleren Durchmesser von ca. 50 nm und Dicken < 10 nm (Abbildung 3 B, C). In Kooperation mit der Professur Anorganische Chemie I der TU Dresden konnte am Beispiel der intermetallischen Phase Bi3Ni erfolgreich die gezielte Einstellung der Partikelgröße und –morphologie unter Verwendung des mesoporösen Oxids SBA-15 als Exotemplat gezeigt werden. Die herausgelösten Proben zeigen röntgenographisch phasenreine, agglomerierte, sphärische Nanopartikel mit einem Durchmesser von < 8 nm. Die statische Magnetisierung sowie die Transporteigenschaften an den morphologisch unterschiedlichen Proben des Typ-II Supraleiters Bi3Ni wurden in Kooperation mit dem Hochfeld-Magnetlabor des Helmholtz-Zentrum Dresden-Rossendorf untersucht. Es zeigt sich, dass durch chemische Nanostrukturierung physikalische Eigenschaften generiert werden, welche Volumenproben derselben Substanz nicht aufweisen: Die als unvereinbare Antagonisten angesehenen Grundzustände Ferromagnetismus und Supraleitung können in mesoskopischem Bi3Ni nicht nur koexistieren, sondern stärken einander sogar (Abbildung 4). Diese Ergebnisse zeigen beispielhaft, dass Partikelgrößen im Zusammenspiel mit chemischer Substrukturierung in quasi-1D-Bindungssystemen essentiell für das Auftreten neuartiger Quanteneffekte sind. In Zusammenarbeit mit dem Max-Planck-Institut für Chemische Physik fester Stoffe wurden die röntgenographisch phasenreinen Proben von BiNi (Nadeln), Bi3Ni (Stäbchen) und BiRh (hexagonale Nanoplättchen) hinsichtlich ihrer potentiellen Anwendung zur Semihydrierung von Acetylen untersucht. Für die Proben des Systems Bi/Ni kann keinerlei katalytische Aktivität gemessen werden, wohingegen die katalytischen Eigenschaften der BiRh Nanopartikel für die Semihydrierung von Acetylen hervorragend sind. So weisen die hexagonalen Nanoplättchen eine außerordentlich hohe Selektivität gegenüber Acetylen sowie eine sehr gute Langzeitstabilität, im Vergleich zu einem kommerziell erhältlichen Pd/Al2O3 Katalysator, auf. Auf Basis der im Rahmen dieser Arbeit entwickelten und in ihren Ergebnissen (Phase, Reinheit, verschiedene Morphologien) kontrollierbaren sowie zeit- und energieeffizienten reduktiven Solvothermalmethode zur Synthese von intermetallischen Verbindungen ist der Zugang zu weiteren neuartigen, mehrkomponentigen, metallischen Materialien, welche durch klassische metallurgische Hochtemperaturschmelz- oder -sinterprozesse nur schwer oder gar nicht zugänglich sind, möglich. Allgemein kann das beschriebene Verfahren als eine verlässliche, breit anwendbare Methode zur Synthese wohl strukturierter Verbindungen auf chemischem Weg bei Temperaturen bis maximal 250 °C angesehen werden, welches eine große Bandbreite an verschiedenen Einsatzmöglichkeiten bietet.
3

Towards an optimal contact metal for CNTFETs

Fediai, Artem, Ryndyk, Dmitry A., Seifert, Gotthard, Mothes, Sven, Claus, Martin, Schröter, Michael, Cuniberti, Gianaurelio 07 April 2017 (has links) (PDF)
Downscaling of the contact length Lc of a side-contacted carbon nanotube field-effect transistor (CNTFET) is challenging because of the rapidly increasing contact resistance as Lc falls below 20–50 nm. If in agreement with existing experimental results, theoretical work might answer the question, which metals yield the lowest CNT–metal contact resistance and what physical mechanisms govern the geometry dependence of the contact resistance. However, at the scale of 10 nm, parameter-free models of electron transport become computationally prohibitively expensive. In our work we used a dedicated combination of the Green function formalism and density functional theory to perform an overall ab initio simulation of extended CNT–metal contacts of an arbitrary length (including infinite), a previously not achievable level of simulations. We provide a systematic and comprehensive discussion of metal–CNT contact properties as a function of the metal type and the contact length. We have found and been able to explain very uncommon relations between chemical, physical and electrical properties observed in CNT–metal contacts. The calculated electrical characteristics are in reasonable quantitative agreement and exhibit similar trends as the latest experimental data in terms of: (i) contact resistance for Lc = ∞, (ii) scaling of contact resistance Rc(Lc); (iii) metal-defined polarity of a CNTFET. Our results can guide technology development and contact material selection for downscaling the length of side-contacts below 10 nm.
4

Carbon Nanotube Devices / Bauelemente aus Kohlenstoff-Nanoröhren

Seidel, Robert Viktor 01 January 2005 (has links) (PDF)
Eine Reihe wichtiger Wachstums- und Integrationsaspekte von Kohlenstoff-Nanoröhren wurde im Rahmen dieser Arbeit untersucht. Der Schwerpunkt der experimentellen Arbeit lag dabei hauptsächlich bei einschaligen Kohlenstoffnanoröhren (SWCNT). Das große Potential dieser Nanoröhren für Transistor-Anwendungen wurde durch die Herstellung einer Vielzahl funktionierender Bauelemente aus diesen Kohlenstoffnanoröhren mittels relativ einfacher Herstellungsprozesse demonstriert. Ein fundiertes Verständnis für die Abhängigkeiten des Nanoröhrenwachstums von einer Vielzahl an Parametern wurde mit Hilfe mehrerer tausend Wachstumsexperimente gesammelt. Verschiedene Katalysatormetalle, Kohlenstoffquellen und Katalysatorunterlagen wurden detailliert untersucht. Ein Hauptaugenmerk wurde dabei auf eine Reduzierung der Wachstumstemperatur gerichtet. Die niedrige Wachstumstemperatur spielt eine große Rolle für eine möglichst hohe Kompatibilität mit konventionellen Herstellungsverfahren der Silizium-Halbleitertechnik. Ein einfaches phänomenologisches Wachstumsmodell wurde für die Synthese von Nanoröhren mittels katalytisch-chemischer Gasphasen-Abscheidung (CCVD) formuliert. Dieses Modell basiert hauptsächlich auf der Oberflächendiffusion von adsorbierten Kohlenstoffverbindungen entlang der Seitenwände der Nanoröhren sowie auf der Oberfläche der Katalysatorunterlage. Das Modell ist eine wichtige Ergänzung zu dem VLS-Mechanismus. Ein Wachstumsverfahren zur Herstellung von Nanoröhren für niedrigere Temperaturen bis zu 600 °C wurde entwickelt. Experimentell wurde nachgewiesen, dass der Durchmesser des Katalysatorteilchens fast ausschließlich bestimmt, wie viele Schalen eine wachsende Nanoröhre bei geeigneten Wachstumsbedingungen hat. Es wurde zum ersten Mal gezeigt, dass einschalige Kohlenstoffnanoröhren auf Metallelektroden wachsen werden können, insofern eine dünne Aluminiumschicht als Trennschicht verwendet wird. Dadurch können in-situ kontaktierte Nanoröhren einfach hergestellt werden, was deren elektrische Charakterisierung weitaus erleichtert. Mittels stromloser Abscheidung von Nickel oder Palladium aus einer Lösung konnte eine deutliche Verbesserung der Kontaktwiderstände der in-situ-kontaktierten Nanoröhren erreicht werden. Durch Einbettung von Nanoröhren in eine Tantaloxidschicht konnten Transistoren mit einem Dielektrikum mit hoher relativer Dielektrizitätskonstante hergestellt werden. Die Tantaloxidschicht wurde mit einem neu entwickelten Tauchprozess abgeschieden. Erstmalig wurden Transistoren basierend auf Kohlenstoffnanoröhren hergestellt, die relativ hohe Ströme (Milliampere) mit einer Modulation bis zu einem Faktor 500 schalten können. Diese Transistoren beruhen auf einer Parallelschaltung einer großen Anzahl an Nanoröhren. Mit Hilfe der hergestellten Transistoren konnten die Eigenschaften einer großen Zahl von Nanoröhren untersucht werden, wobei große Unterschiede in den elektronischen Eigenschaften von metallischen Nanoröhren, halbleitenden Nanoröhren und Nanoröhren mit einer kleinen Bandlücke beobachtet wurden. / A number of very important growth and integration aspects of carbon nanotubes have been investigated during the course of this thesis. The focus was mainly on single-walled carbon nanotubes. Their potential for transistor applications was demonstrated by the successful fabrication of a variety of devices using rather simple processes. A detailed understanding of the dependence of SWCNT growth on a variety of parameters was obtained as the result of several thousand growth experiments. Various catalyst materials, gaseous carbon sources, and catalyst supports have been investigated. Special attention was paid to a considerable reduction of the growth temperature. A simple phenomenological growth model could be derived for CCVD of SWCNTs taking into account a number of effects observed during the various growth experiments. The model presented is mainly based on the surface diffusion of carbon species along the sidewalls of the carbon nanotubes or on the catalyst support and is an addition to the vapor-liquid-solid (VLS) mechanism. Growth methods for the CCVD synthesis of SWCNTs were developed for temperatures as low as 600 °C. It has been found that the size of the catalyst particle alone determines whether a SWCNT, DWCNT, or MWCNT will nucleate from a specific particle under suitable growth conditions. It could be demonstrated for the first time that SWCNTs can be grown on a variety of conducting materials if the catalyst is separated from the electrode by a thin Al layer. In-situ contacted SWCNTs can be easily obtained that way, largely facilitating the electronic characterization of as-grown SWCNTs. A tremendous improvement of the contacts of in-situ contacted SWCNTs could be achieved by electroless deposition. SWCNT growth on appropriate electrodes allowed the encapsulation of the nanotubes by electroless deposition of Ni and Pd, yielding good and reliable contacts. SWCNT transistors with a high-k dielectric could be fabricated by encapsulation of the nanotube with a tantalum oxide layer. The tantalum oxide was deposited by a newly developed dip-coat process. High-current SWCNT transistors consisting of a large number of SWCNTs in parallel were demonstrated for the first time during this work. Finally, the properties of a large number of CCVD grown SWCNTs have been investigated by electronic transport measurement. Large differences in the electronic transport have been observed for metallic, small band gap semiconducting (SGS), and semiconducting SWCNTs with small diameters.
5

Healing Microcracks and Early Warning Composite Fractures

Gao, Shang-Lin, Liu, Jian-Wen, Zhuang, Rong-Chuang, Plonka, Rosemarie, Mäder, Edith 01 December 2011 (has links) (PDF)
A functional nanometer-scale hybrid coating layer with multi-walled carbon nanotubes (MWCNTs) and/or nanoclays, as mechanical enhancement to ‘heal’ surface microcracks and environmental barrier layer is applied to alkaliresistant glass (ARG) fibres. The nanostructured and functionalised traditional glass fibres show both significantly improved mechanical properties and environmental corrosion resistance. Early warning material damage can be achieved by carbon nanotubes concentrated interphases in the composites. / Eine funktionale nanometerskalige Hybridbeschichtung mit multi-walled carbon nanotubes (MWCNTs) und/oder Nanoclay wurde als mechanische Verbesserung des „Ausheilens“ von Oberflächen-Mikrorissen und Barriereschicht gegenüber Umwelteinflüssen auf alkaliresistente Glasfasern (ARG) appliziert. Die nanostrukturierten und funktionalisierten traditionellen Glasfasern zeigen signifikant verbesserte mechanische Eigenschaften und Korrosionsbeständigkeit. Die Frühwarnung des Materialversagens kann durch Carbon Nanotubes, konzentriert in der Grenzschicht der Composites, erreicht werden.
6

Carbon Nanotube Devices

Seidel, Robert Viktor 20 December 2004 (has links)
Eine Reihe wichtiger Wachstums- und Integrationsaspekte von Kohlenstoff-Nanoröhren wurde im Rahmen dieser Arbeit untersucht. Der Schwerpunkt der experimentellen Arbeit lag dabei hauptsächlich bei einschaligen Kohlenstoffnanoröhren (SWCNT). Das große Potential dieser Nanoröhren für Transistor-Anwendungen wurde durch die Herstellung einer Vielzahl funktionierender Bauelemente aus diesen Kohlenstoffnanoröhren mittels relativ einfacher Herstellungsprozesse demonstriert. Ein fundiertes Verständnis für die Abhängigkeiten des Nanoröhrenwachstums von einer Vielzahl an Parametern wurde mit Hilfe mehrerer tausend Wachstumsexperimente gesammelt. Verschiedene Katalysatormetalle, Kohlenstoffquellen und Katalysatorunterlagen wurden detailliert untersucht. Ein Hauptaugenmerk wurde dabei auf eine Reduzierung der Wachstumstemperatur gerichtet. Die niedrige Wachstumstemperatur spielt eine große Rolle für eine möglichst hohe Kompatibilität mit konventionellen Herstellungsverfahren der Silizium-Halbleitertechnik. Ein einfaches phänomenologisches Wachstumsmodell wurde für die Synthese von Nanoröhren mittels katalytisch-chemischer Gasphasen-Abscheidung (CCVD) formuliert. Dieses Modell basiert hauptsächlich auf der Oberflächendiffusion von adsorbierten Kohlenstoffverbindungen entlang der Seitenwände der Nanoröhren sowie auf der Oberfläche der Katalysatorunterlage. Das Modell ist eine wichtige Ergänzung zu dem VLS-Mechanismus. Ein Wachstumsverfahren zur Herstellung von Nanoröhren für niedrigere Temperaturen bis zu 600 °C wurde entwickelt. Experimentell wurde nachgewiesen, dass der Durchmesser des Katalysatorteilchens fast ausschließlich bestimmt, wie viele Schalen eine wachsende Nanoröhre bei geeigneten Wachstumsbedingungen hat. Es wurde zum ersten Mal gezeigt, dass einschalige Kohlenstoffnanoröhren auf Metallelektroden wachsen werden können, insofern eine dünne Aluminiumschicht als Trennschicht verwendet wird. Dadurch können in-situ kontaktierte Nanoröhren einfach hergestellt werden, was deren elektrische Charakterisierung weitaus erleichtert. Mittels stromloser Abscheidung von Nickel oder Palladium aus einer Lösung konnte eine deutliche Verbesserung der Kontaktwiderstände der in-situ-kontaktierten Nanoröhren erreicht werden. Durch Einbettung von Nanoröhren in eine Tantaloxidschicht konnten Transistoren mit einem Dielektrikum mit hoher relativer Dielektrizitätskonstante hergestellt werden. Die Tantaloxidschicht wurde mit einem neu entwickelten Tauchprozess abgeschieden. Erstmalig wurden Transistoren basierend auf Kohlenstoffnanoröhren hergestellt, die relativ hohe Ströme (Milliampere) mit einer Modulation bis zu einem Faktor 500 schalten können. Diese Transistoren beruhen auf einer Parallelschaltung einer großen Anzahl an Nanoröhren. Mit Hilfe der hergestellten Transistoren konnten die Eigenschaften einer großen Zahl von Nanoröhren untersucht werden, wobei große Unterschiede in den elektronischen Eigenschaften von metallischen Nanoröhren, halbleitenden Nanoröhren und Nanoröhren mit einer kleinen Bandlücke beobachtet wurden. / A number of very important growth and integration aspects of carbon nanotubes have been investigated during the course of this thesis. The focus was mainly on single-walled carbon nanotubes. Their potential for transistor applications was demonstrated by the successful fabrication of a variety of devices using rather simple processes. A detailed understanding of the dependence of SWCNT growth on a variety of parameters was obtained as the result of several thousand growth experiments. Various catalyst materials, gaseous carbon sources, and catalyst supports have been investigated. Special attention was paid to a considerable reduction of the growth temperature. A simple phenomenological growth model could be derived for CCVD of SWCNTs taking into account a number of effects observed during the various growth experiments. The model presented is mainly based on the surface diffusion of carbon species along the sidewalls of the carbon nanotubes or on the catalyst support and is an addition to the vapor-liquid-solid (VLS) mechanism. Growth methods for the CCVD synthesis of SWCNTs were developed for temperatures as low as 600 °C. It has been found that the size of the catalyst particle alone determines whether a SWCNT, DWCNT, or MWCNT will nucleate from a specific particle under suitable growth conditions. It could be demonstrated for the first time that SWCNTs can be grown on a variety of conducting materials if the catalyst is separated from the electrode by a thin Al layer. In-situ contacted SWCNTs can be easily obtained that way, largely facilitating the electronic characterization of as-grown SWCNTs. A tremendous improvement of the contacts of in-situ contacted SWCNTs could be achieved by electroless deposition. SWCNT growth on appropriate electrodes allowed the encapsulation of the nanotubes by electroless deposition of Ni and Pd, yielding good and reliable contacts. SWCNT transistors with a high-k dielectric could be fabricated by encapsulation of the nanotube with a tantalum oxide layer. The tantalum oxide was deposited by a newly developed dip-coat process. High-current SWCNT transistors consisting of a large number of SWCNTs in parallel were demonstrated for the first time during this work. Finally, the properties of a large number of CCVD grown SWCNTs have been investigated by electronic transport measurement. Large differences in the electronic transport have been observed for metallic, small band gap semiconducting (SGS), and semiconducting SWCNTs with small diameters.
7

Abscheidung von (Kohlenstoff)Nanostrukturen mittels PE-HF-CVD

Pacal, Frantisek 11 July 2006 (has links)
Kohlenstoffnanoröhren besitzen eine Reihe von einzigartigen strukturellen, mechanischen und elektronischen Eigenschaften. Sie können in Abhängigkeit von der Chiralität metallisches oder halbleitendes Verhalten zeigen, hohe mechanische, thermische und chemische Stabilität aufweisen, können chemisch funktionalisiert werden und sind hervorragende Elektronenemitter. Vor dem Hintergrund dieser vielversprechenden Eigenschaften wurde schnell die Frage von möglichen technischen Anwendungen von Kohlenstoffnanoröhren gestellt. Vor einer umfassenden kommerziellen Umsetzung sind allerdings noch grundlegende Untersuchungen, sowohl zu den Eigenschaften als auch zu einer gezielten Herstellung und Manipulation, erforderlich. Der Mechanismus des gerichteten Wachstums der Kohlenstoffnanoröhren ist äußerst komplex, weshalb er bis heute nicht völlig aufgeklärt werden konnte. Der Grund liegt in der Vielfalt der möglichen Reaktionen zwischen den Molekülen in der Gasphase, der Wechselwirkung zwischen Gasphase und verwendeten Unterlagen und den Reaktionsmechanismen auf diesen Substratoberflächen. Bislang fehlt es an einem einheitlichen Verständnis des Entstehungsprozesses von Kohlenstoffnanoröhren bzw. –nanostrukturen. Der Schwerpunkt dieser Arbeit liegt in der Abscheidung von Kohlenstoffnanostrukturen mittels plasmaaktivierter und hitzdrahtgestützter chemischen Gasphasenabscheidung -„Plasma enhanced hot filament chemical vapor deposition“ (PE-HF-CVD). Es sollen Abscheidungsbedingungen für die Synthese von unterschiedlichen Kohlenstoffnanostrukturen gefunden und optimiert werden. Die Darstellung und Charakterisierung von „phasenreinen“, mehrwandigen, tubularen Röhren auf unterschiedlichen metallbeschichteten Substraten steht im Vordergrund der Arbeit. Das Interesse besteht in einer Abscheidung bei niedrigen Substrattemperaturen, damit temperaturempfindliche Werkstoffe wie z.B. Glas, als Substratmaterialien eingesetzt werden können. Mittels der PE-HF-CVD Methode, die als vielversprechende Technologie zur Darstellung gerichteter Kohlenstoffnanoröhren gilt, sollen Erkenntnisse zum Einfluss einzelner Abscheidungsparameter auf den Wachstumsprozess von Nanoröhren gewonnen werden, wozu auch die plasmadiagnostische Langmuirsondentechnik und die optische Emissionsspektroskopie (OES) eingesetzt werden. Dadurch soll der Zusammenhang zwischen inneren Plasmaparametern und Wachstumsprozessen der Kohlenstoffnanoröhren oder –fasern definiert werden, um eine Prozesskontrolle während der Abscheidungsphase zu ermöglichen.
8

Bismutbasierte Nanoröhren und mesoskopische Partikel von intermetallischen Phasen des Typs BinM (n = 1 – 4, M = Ni, Rh): Niedertemperatursynthese, Charakterisierung und Untersuchungen zu potentiellen Anwendungen

Köhler, Daniel 05 October 2011 (has links)
Die grundlegende Frage- bzw. Problemstellung der vorliegenden Arbeit war die Entwicklung innovativer Synthesemethoden für die nanoskalige, anorganische Festkörper- und Materialchemie, sowie die umfassende Charakterisierung der neuartigen Materialien und deren Untersuchung hinsichtlich potentieller Anwendungen. Die Arbeit umfasst dabei zwei große Themengebiete: Das Kapitel Bismutbasierte Nanoröhren beschreibt detailliert die neuartige Synthese doppelwandiger Bismut-Nanoröhren (engl. Double Walled Bismuth Nanotubes, DWBiNTs) bei Raumtemperatur, durch die Umsetzung von Bismutmonoiodid mit n-Butyllithium (n-BuLi) zu elementarem Bismut. Elektronenmikroskopische Untersuchungen des resultierenden feinen schwarzen Pulvers zeigen homogen strukturierte, stark agglomerierte, anisotrope Partikel mit Längen von mehreren hundert Nanometer, welche an den Enden geöffnet vorliegen und zudem einen „zwiebelartigen“ Aufbau mit einem einheitlichen inneren Durchmesser von ca. 4,5 nm sowie einen äußeren Durchmesser von ca. 6 nm aufweisen (Abbildung 1 A – C). Auf Grundlage dieser Erkenntnisse wurden von Rasche quantenchemische Rechnungen am Modell einer (34,0)@(40,0)-DWBiNT durchgeführt, aus denen neben einer hexagonal facettierten Querschnittsgeometrie (Abbildung 1 D) durch Rechnungen der elektronischen Eigenschaften eine direkte Bandlücke von 0,5 eV hervorgeht, womit es sich bei diesen Strukturen um Halbleiter handeln sollte. Im Gegensatz zu bislang bekannten Synthesemethoden für Bi-Nanoröhren kann die in der vorliegenden Arbeit entwickelte Syntheseroute als chemische Top-Down-Bottom-Up-Methode verstanden werden. Hiermit soll die Kaskade des Herauslösens der im Festkörper vorgeprägten Strukturen (chemisch Top-Down) gefolgt von deren Reorganisation zu nanoskopischen Objekten (klassisch Bottom-Up) verdeutlicht werden. Diese Herangehens-weise der Niedertemperaturreduktion klassischer Festkörperverbindungen ist bislang einzigartig und konnte basierend auf den Ergebnissen der vorliegenden Arbeit innerhalb des Arbeitskreises bereits erfolgreich auf intermetallische Phasen übertragen werden. Es konnte ferner gezeigt werden, dass es durch die milde Oxidation von DWBiNTs im O2-Strom möglich ist, unter Erhalt der Morphologie gezielt Nanoröhren der unter Normalbedingungen metastabilen β-Modifikation von Bi2O3 zu synthetisieren. Diese wurden in Zusammenarbeit mit dem Kurt-Schwabe-Institut für Mess- und Sensortechnik e.V. Meinsberg hinsichtlich ihrer gassensitiven Eigenschaften untersucht. Während die oxidischen Nanoröhren keine Sensitivität gegenüber CO und nur eine geringe H2-Sensitivität aufweisen, zeigt sich eine signifikante Widerstandserhöhung mit sinkendem Sauerstoffpartialdruck im Gasgemisch. Diese Befunde zeigen eine mögliche, bislang nicht untersuchte Anwendung von Bi2O3 als Sauerstoffsensor. Das Kapitel Mikrowellenunterstützte Niedertemperatursynthese der vorliegenden Arbeit widmet sich – basierend auf dem Polyolprozess (Abbildung 2) – der zeit- und energieeffizienten Synthese der intermetallischen Phasen BiNi, Bi3Ni und BiRh, welche durch herkömmliche metallurgische Hochtemperaturschmelz- oder sinterprozesse nur schwer zugänglich sind. Besonderer Schwerpunkt liegt in der gezielten Synthese mikro- und nanostrukturierter Proben. Die intermetallische Phase Bi3Ni kann röntgenographisch phasenrein in Form homogener stäbchenförmiger Partikel mit Abmessungen von ca. 200 nm x 600 nm, so genanntes submikroskaliges Bi3Ni, synthetisiert werden (Abbildung 3 A). Ebenso erfolgreich gestaltet sich die Synthese der nickelreicheren Phase BiNi in Form von Nadeln mit Durchmessern von wenigen Nanometern und Längen von mehreren Mikrometern sowie der binären Phase BiRh in Gestalt wohl definierter hexagonal facettierter, plättchenartiger Partikel mit einem mittleren Durchmesser von ca. 50 nm und Dicken < 10 nm (Abbildung 3 B, C). In Kooperation mit der Professur Anorganische Chemie I der TU Dresden konnte am Beispiel der intermetallischen Phase Bi3Ni erfolgreich die gezielte Einstellung der Partikelgröße und –morphologie unter Verwendung des mesoporösen Oxids SBA-15 als Exotemplat gezeigt werden. Die herausgelösten Proben zeigen röntgenographisch phasenreine, agglomerierte, sphärische Nanopartikel mit einem Durchmesser von < 8 nm. Die statische Magnetisierung sowie die Transporteigenschaften an den morphologisch unterschiedlichen Proben des Typ-II Supraleiters Bi3Ni wurden in Kooperation mit dem Hochfeld-Magnetlabor des Helmholtz-Zentrum Dresden-Rossendorf untersucht. Es zeigt sich, dass durch chemische Nanostrukturierung physikalische Eigenschaften generiert werden, welche Volumenproben derselben Substanz nicht aufweisen: Die als unvereinbare Antagonisten angesehenen Grundzustände Ferromagnetismus und Supraleitung können in mesoskopischem Bi3Ni nicht nur koexistieren, sondern stärken einander sogar (Abbildung 4). Diese Ergebnisse zeigen beispielhaft, dass Partikelgrößen im Zusammenspiel mit chemischer Substrukturierung in quasi-1D-Bindungssystemen essentiell für das Auftreten neuartiger Quanteneffekte sind. In Zusammenarbeit mit dem Max-Planck-Institut für Chemische Physik fester Stoffe wurden die röntgenographisch phasenreinen Proben von BiNi (Nadeln), Bi3Ni (Stäbchen) und BiRh (hexagonale Nanoplättchen) hinsichtlich ihrer potentiellen Anwendung zur Semihydrierung von Acetylen untersucht. Für die Proben des Systems Bi/Ni kann keinerlei katalytische Aktivität gemessen werden, wohingegen die katalytischen Eigenschaften der BiRh Nanopartikel für die Semihydrierung von Acetylen hervorragend sind. So weisen die hexagonalen Nanoplättchen eine außerordentlich hohe Selektivität gegenüber Acetylen sowie eine sehr gute Langzeitstabilität, im Vergleich zu einem kommerziell erhältlichen Pd/Al2O3 Katalysator, auf. Auf Basis der im Rahmen dieser Arbeit entwickelten und in ihren Ergebnissen (Phase, Reinheit, verschiedene Morphologien) kontrollierbaren sowie zeit- und energieeffizienten reduktiven Solvothermalmethode zur Synthese von intermetallischen Verbindungen ist der Zugang zu weiteren neuartigen, mehrkomponentigen, metallischen Materialien, welche durch klassische metallurgische Hochtemperaturschmelz- oder -sinterprozesse nur schwer oder gar nicht zugänglich sind, möglich. Allgemein kann das beschriebene Verfahren als eine verlässliche, breit anwendbare Methode zur Synthese wohl strukturierter Verbindungen auf chemischem Weg bei Temperaturen bis maximal 250 °C angesehen werden, welches eine große Bandbreite an verschiedenen Einsatzmöglichkeiten bietet.
9

Healing Microcracks and Early Warning Composite Fractures

Gao, Shang-Lin, Liu, Jian-Wen, Zhuang, Rong-Chuang, Plonka, Rosemarie, Mäder, Edith January 2011 (has links)
A functional nanometer-scale hybrid coating layer with multi-walled carbon nanotubes (MWCNTs) and/or nanoclays, as mechanical enhancement to ‘heal’ surface microcracks and environmental barrier layer is applied to alkaliresistant glass (ARG) fibres. The nanostructured and functionalised traditional glass fibres show both significantly improved mechanical properties and environmental corrosion resistance. Early warning material damage can be achieved by carbon nanotubes concentrated interphases in the composites. / Eine funktionale nanometerskalige Hybridbeschichtung mit multi-walled carbon nanotubes (MWCNTs) und/oder Nanoclay wurde als mechanische Verbesserung des „Ausheilens“ von Oberflächen-Mikrorissen und Barriereschicht gegenüber Umwelteinflüssen auf alkaliresistente Glasfasern (ARG) appliziert. Die nanostrukturierten und funktionalisierten traditionellen Glasfasern zeigen signifikant verbesserte mechanische Eigenschaften und Korrosionsbeständigkeit. Die Frühwarnung des Materialversagens kann durch Carbon Nanotubes, konzentriert in der Grenzschicht der Composites, erreicht werden.
10

Fabrication and characterization of highly-ordered TiO2-CoO, CNTs@TiO2-CoO and TiO2-SnO2 nanotubes as novel anode materials in lithium ion batteries

Madian, Mahmoud 30 January 2018 (has links) (PDF)
Developed rechargeable batteries are urgently required to make more efficient use of renewable energy sources to support our modern way of life. Among all battery types, lithium batteries have attracted the most attention because of the high energy density (both gravimetric and volumetric), long cycle life, reasonable production cost and the ease of manufacturing flexible designs. Indeed, electrode material characteristics need to be improved urgently to fulfil the requirements for high performance lithium ion batteries. TiO2-based anodes are highly promising materials for LIBs to replace carbon due to fast lithium insertion/extraction kinetics, environmentally-friendly behavior, low cost and low volume change (less than 4%) therewith, high structural stability as well as improved safety issues are obtained. Nevertheless, the low ionic and electric conductivity (≈ 10−12 S m−1) of TiO2 represent the main challenge. In short, the present work aims at developing, optimization and construction of novel anode materials for lithium ion batteries using materials that are stable, abundant and environmentally friendly. Herein, both of two-phase Ti80Co20 and single phase Ti-Sn alloys (with different Sn contents of 1 to 10 at.%) were used to fabricate highly ordered, vertically oriented and dimension-controlled 1D nanotubes of mixed transition metal oxides (TiO2-CoO and TiO2-SnO2) via a straight-forward anodic oxidation step in organic electrolytes containing NH4F. Surface morphology and current density for the initial nanotube formation are found to be dependent on the crystal structure of the alloy phases. Various characterization tools such as SEM, EDXS, TEM, XPS and Raman spectroscopy were used to characterize the grown nanotube films. The results reveal the successful formation of mixed TiO2-CoO and TiO2-SnO2 nanotubes under the selected voltage ranges. The as-formed nanotubes are amorphous and their dimensions are precisely controlled by tuning the formation voltage. The electrochemical performance of the grown nanotubes was evaluated against a Li/Li+ electrode at different current densities. The results revealed that TiO2-CoO nanotubes prepared at 60 V exhibited the highest areal capacity of ~ 600 µAh cm–2 (i.e. 315 mAh g–1) at a current density of 10 µA cm–2. At higher current densities TiO2-CoO nanotubes showed nearly doubled lithium ion intercalation and a coulombic efficiency of 96 % after 100 cycles compared to lower effective TiO2 nanotubes prepared under identical conditions. To further improve the electrochemical performance of the TiO2-CoO nanotubes, a novel ternary carbon nanotubes (CNTs)@TiO2-CoO nanotubes composite was fabricated by a two-step synthesis method. The preparation includes an initial anodic fabrication of well-ordered TiO2-CoO NTs from a Ti-Co alloy, followed by growing of CNTs horizontally on the top of the oxide films using a simple spray pyrolysis technique. The unique 1D structure of such a hybrid nanostructure with the inclusion of CNTs demonstrates significantly enhanced areal capacity and rate performances compared to pure TiO2 and TiO2-CoO NTs without CNTs tested under identical conditions. The findings reveal that CNTs provide a highly conductive network that improves Li+ ion diffusivity promoting a strongly favored lithium insertion into the TiO2-CoO NT framework, and hence results in high capacity and extremely reproducible high rate capability. On the other hand, the results demonstrate that TiO2-SnO2 nanotubes prepared at 40 V on a Ti-Sn alloy with 1 at.% Sn display an average 1.4 fold increase in areal capacity with excellent cycling stability over more than 400 cycles compared to the pure TiO2 nanotubes fabricated and tested under identical conditions. The thesis is organized as follows: Chapter 1: General introduction, in which the common situation of energy demand, along with the importance of lithium ion batteries in renewable energy systems and portable devices are discussed. A brief introduction to TiO2-based anode in lithium ion batteries and the genera strategies for developing TiO2 anodes are also presented. The scope of this thesis as well as the main tasks are summarized. Chapter 2: The basic concepts of lithium ion batteries with an overview about their main components are discussed, including a brief information about the anode materials and the crystal structure of TiO2 anode. A detailed review for TiO2 nanomaterials for LIBs including the fabrication methods and the electrochemical performance of various TiO2 nanostructures (nanoparticles, nanorods, nanoneedles, nanowires and nanotubes) as well as porousTiO2 nanostructures is presented. The fabrication of TiO2 nanotubes by anodic oxidation, along with the growth mechanism are highlighted. The factors affecting the electrochemical performance of anodically fabricated pure TiO2, TiO2/carbon composites and TiO2-mixed with another metal oxide are reviewed. Chapter 3: In this chapter, the synthesis of TiO2-CoO, (CNTs)@TiO2-CoO and TiO2-SnO2 nanotubes, along with the characterization techniques and the electrochemical basics and concepts are discussed. Chapter 4: Detailed results and discussion of synthesis, characterizations and the electrochemical performance of TiO2-CoO nanotubes and ternary (CNTs)@TiO2/CoO nanotube composites are presented. Chapter 5: Detailed results and discussion of synthesis, characterizations and the electrochemical performance of ternary (CNTs)@TiO2-CoO nanotube composites are explained. Chapter 6: Detailed results and discussion of synthesis, characterizations and the electrochemical performance of TiO2-SnO2 nanotubes are presented. Chapter 7: Summarizes the results presented in this work finishing with realistic conclusions, and highlights interesting work for the future. / Um die zur Aufrechterhaltung unserer modernen Lebensweise unabdingbaren erneuerbaren Energiequellen effizient nutzen zu können, werden hochentwickelte wiederaufladbare Batterien dringend benötigt. Lithium-Ionenbatterien gelten aufgrund ihrer hohen Energiedichte (sowohl gravimetrisch als auch volumetrisch), ihrer langen Lebensdauer, moderater Produktionskosten und aufgrund der Möglichkeit, vielfältige Konzepte einfach herstellen zu können, als vielversprechend. Dennoch müssen die Elektrodenmaterialien dringend verbessert werden, um den Ansprüchen an zukünftige hochentwickelte Lithium-Ionenbatterien gerecht zu werden. TiO2-basierte Anoden gelten aufgrund ihrer schnellen Lade- und Entladekinetik, ihres umweltfreundlichen Verhaltens und niedriger Kosten als aussichtsreiche Alternativen zu Kohlenstoffen. Durch die geringe Volumenänderung beim Lithiumeinbau (unter 4%) werden außerdem eine hohe strukturelle Stabilität und erhöhte Sicherheit gewährleistet. Die hauptsächlichen Herausforderungen stellen die niedrige ionische und elektrische Leitfähigkeit (≈ 10−12 S m−1) von TiO2 dar. Zusammengefasst liegt das Ziel der vorliegenden Arbeit in der Entwicklung, Optimierung und Herstellung neuartiger Anodenmaterialien für Lithium-Ionenbatterien unter Verwendung stabiler, verfügbarer und umweltfreundlicher Materialien. In dieser Arbeit wurden sowohl zweiphasiges Ti80Co20 und einphasige Ti-Sn-Legierungen (mit verschiedenen Sn-Gehalten zwischen 1 und 10 at-%) zur Herstellung hochgeordneter, vertikal orientierter eindimensionaler Nanoröhren aus gemischten Übergangsmetalloxiden (TiO2–CoO und TiO2–SnO2) mittels anodischer Oxidation in NH4F-haltigen organischen Elektrolyten genutzt. Dabei wurden Abhängigkeiten der Oberflächenmorphologie und der Stromdichte für die Bildung der Nanoröhren von der Kristallstruktur der zugrundeliegenden Legierung beobachtet. Vielfältige Methoden wie REM, EDXS, TEM, XPS und Ramanspektroskopie wurden genutzt, um die Nanoröhren zu charakterisieren. Die Ergebnisse zeigen, dass gemischte TiO2-CoO und TiO2-SnO2 Nanoröhren in den gewählten Spannungsfenstern erfolgreich gebildet werden konnten. Die so hergestellten Nanoröhren sind amorph und in ihren Dimensionen präzise durch die Wahl der Spannung einstellbar. Eine elektrochemische Beurteilung der Nanoröhren erfolgte durch Tests gegen eine Li/Li+-Elektrode bei veschiedenen Stromdichten. Die Resultate zeigen, dass TiO2-CoO-Nanoröhren, welche bei 60 V hergestellt wurden, die höchsten Flächenkapazitäten von ~ 600 µAh cm–2 (d.h. 315 mAh g–1) bei einer Stromdichte von 10 µA cm–2 aufweisen. Bei höheren Stromdichten zeigen TiO2-CoO-Nanoröhren nahezu verdoppelte Lithiuminterkalation und eine Coulomb-Effizienz von 96 % nach 100 Zyklen, verglichen mit weniger effektiven TiO2–Nanoröhren, welche unter identischen Bedingungen hergestellt wurden. Um die elektrochemischen Eigenschaften der TiO2-CoO-Nanoröhren weiter zu verbessern, wurde ein neuer Komposit aus Kohlenstoff-Nanoröhren und TiO2-CoO-Nanoröhren ((CNT)s@TiO2/CoO) durch eine zweistufige Synthese hergestellt. Die Herstellung beinhaltet zunächst die anodische Bildung geordneter TiO2/CoO-Nanoröhren, ausgehend von einer Ti-Co-Legierung, gefolgt von einem horizontalen Kohlenstoff-Nanoröhren-Wachstum auf dem Oxid mittels einer simplen Sprühpyrolyse. Die einzigartige 1D-Struktur einer solchen hybriden Nanostruktur mit eingebundenen CNTs zeigt deutlich erhöhte Flächenkapazitäten und Belastbarkeiten im Vergleich zu Nanoröhren aus TiO2 und TiO2/CoO-Nanoröhren ohne CNTs, die unter identischen Bedingungen getestet wurden. Die Ergebnisse zeigen, dass die CNTs ein hochleitfähiges Netzwerk bilden, welches die Diffusion von Lithium-Ionen und deren Einbau in die TiO2/CoO-Nanoröhren begünstigt und somit hohe Kapazitäten und reproduzierbare hohe Belastbarkeiten bewirkt. Außerdem zeigen die Resultate, dass TiO2-SnO2 Nanoröhren, welche bei 40 V auf einer Ti-Sn-Legierung mit 1 at.% Sn hergestellt wurden, im Mittel eine 1,4-fache Erhöhung der Flächenkapazität und eine exzellente Zyklenstabilität über mehr als 400 Zyklen, verglichen mit unter identischen Konditionen hergestellten und getesteten TiO2-Nanoröhren, zeigen. Die Arbeit ist wie folgt organisiert: Kapitel 1: Allgemeine Einführung, in der die Energienachfrage und die Bedeutung von Lithium-Ionenbatterien in erneuerbaren Energiesystemen und tragbaren Geräten diskutiert wird. Eine kurze Einleitung zu TiO2-basierten Anoden in Lithium-Ionenbatterien und allgemeine Strategien zur Entwicklung von TiO2-Anoden werden ebenfalls gezeigt. Das Ziel der Arbeit und hauptsächliche Aufgaben werden zusammengefasst. Kapitel 2: Das grundlegende Konzept der Lithium-Ionenbatterie mit einem Überblick über ihre Hauptkomponenten wird diskutiert. Dies beinhaltet auch eine kurze Darstellung der Anodenmaterialien und der Kristallstruktur von TiO2-Anoden. Eine detaillierte Übersicht über TiO2-Nanomaterialien für LIB, welche Herstellungsmethoden und die elektrochemische Performance verschiedener TiO2-Nanostrukturen (Nanopartikel, Nanostäbe, Nanonadeln, Nanodrähte und Nanoröhren) und poröser TiO2-Nanostrukturen beinhaltet, wird gezeigt. Die Bildung von TiO2-Nanoröhren durch anodische Oxidation und der Wachstumsmechanismus werden hervorgehoben. Faktoren, welche die elektrochemische Performance anodisch hergestellter TiO2-Materialien, TiO2/Kohlenstoff-Komposite und TiO2 als Gemisch mit anderen Metalloxiden beeinflussen, werden diskutiert. Kapitel 3: In diesem Kapitel werden die Synthese von TiO2-CoO, (CNTs)@TiO2/CoO und TiO2-SnO2-Nanoröhren, die Charakterisierungsmethoden, elektrochemische Grundlagen und Konzepte diskutiert. Kapitel 4: Detaillierte Resultate und die Diskussion der Synthese, Charakterisierung und der elektrochemischen Performance der TiO2-CoO- Nanoröhren und der ternären (CNTs)@TiO2/CoO-Nanoröhrenkomposite werden gezeigt. Kapitel 5: Detaillierte Resultate und die Diskussion der Synthese, Charakterisierung und der elektrochemischen Performance der der ternären (CNTs)@TiO2/CoO-Nanoröhrenkomposite werden diskutiert. Kapitel 6: Detaillierte Resultate und die Diskussion der Synthese, Charakterisierung und der elektrochemischen Performance von TiO2-SnO2-Nanoröhren werden gezeigt. Kapitel 7: Eine Zusammenfassung der Resultate, die in dieser Arbeit gezeigt wurden und Schlussfolgerungen, sowie interessante Ansatzpunkte für zukünftige Arbeiten werden präsentiert.

Page generated in 0.0552 seconds