Return to search

Bacteroid differentiation in Aeschynomene legumes / Différenciation des bactéroïdes chez les Aeschynomene

Les Légumineuses ont développé une interaction symbiotique avec des bactéries du sol, les rhizobia, qui fixent l’azote atmosphérique et le transfèrent à la plante sous forme assimilable.Cette interaction a lieu, au sein des nodosités, des organes racinaires où les bactéries intracellulaires se différencient en bactéroïdes. Chez Medicago truncatula, ces bactéroïdes correspondent à un stade de différentiation terminale corrélée à une endoréplication de leur génome, une augmentation de la taille des cellules, une modification des membranes et une faible capacité à se propager. Cette différentiation est induite par des facteurs de la plante appelés NCR (Nodule-specific Cysteine Rich). Les peptides NCRs ressemblent à des défensines, des peptides antimicrobiens ayant une activité antimicrobienne in vitro, tuant des bactéries. Ainsi, un élément clef dans la différenciation des bactéroïdes est la protéine bactérienne BacA, un transporteur membranaire qui confère une résistance contre l’activité antimicrobienne des peptides. Dans le cadre de ce travail de thèse, j’ai montré que l'expression des NCR est soumise à une régulation stricte et qu’ils sont activés dans trois vagues dans les cellules symbiotiques polyploïdes.Les mécanismes de contrôle par la plante sur les rhizobia intracellulaires demeurent à ce jourpeu connus et le seul modèle étudié, au début de ce travail de thèse, restait l'interaction entre M. truncatula et S. meliloti. Je me suis donc intéressée à la symbiose de certaines Légumineuses tropicales du genre Aeschynomene appartenant au clade des Dalbergoïdes où jemontre qu’ils utilisent une classe différente de peptides riches en cystéine (NCR-like) pour induire la différenciation des bactéroïdes. Ce mécanisme est analogue à celui décrit précédemment chez Medicago qui était jusqu'à présent supposé être limitée aux légumineuses appartenant au clade des IRLC. J’ai également montré que Bradyrhizobium, symbionte d’Aeschynomene possèdent un transporteur de type ABC homologues à BacA de Sinorhizobium nommé BclA. Ce gène permet l'importation d'une variété de peptides comprenant des peptides NCR. En l'absence de ce transporteur, les rhizobiums sont incapables de se différencier et de fixer l'azote.Cette étude a permis d'élargir nos connaissances sur l'évolution de la symbiose en montrant qu’au cours de l’évolution, deux clades de Légumineuses relativement éloignés (IRLC et Dalbergoïdes) aient convergé vers l’utilisation de peptides de l’immunité innée afin de contrôler leur symbionte bactérien et d’en tirer un bénéfice maximal au cours de l’interaction symbiotique. / The ability of legumes to acquire sufficient nitrogen from the symbiosis with Rhizobium relies on the intimate contact between the endosymbiotic, intracellular rhizobia, called bacteroids, and their host cells, the symbiotic nodule cells. A well-studied example is the symbiotic nitrogen fixing bacterium Sinorhizobium meliloti, which nodulates the legume Medicago truncatula. Nodules of M. truncatula produce an enormous diversity of peptides called NCRs which are similar to antimicrobial peptides (AMPs) of innate immune systems. These NCRs are involved in maintaining the homeostasis between the host cells in the nodules and the large bacterial population they contain. Although many NCRs are genuine AMPs which kill microbes in vitro, in nodule cells they do not kill the bacteria but induce them into the terminally differentiated bacteroid state involving cell elongation, genome amplification, membrane fragilization and loss of cell division capacity. Protection against the antimicrobial action of NCRs by the bacterial BacA protein is critical for bacteroid survival in the symbiotic cells and thus for symbiosis. As a part of my PhD thesis, I have shown that the differentiation of the symbiotic cells in M. truncatula is associated with a tremendous transcriptional reprogramming involving hundreds of genes, mainly NCR genes, which are only expressed in these cells. Although the extensive work on the model M. truncatula/S. meliloti, little is known how the plant controls its intracellular population and imposes its differentiation into a functional form, the bacteroids in other symbiotic systems.In my PhD work, I provide several independent pieces of evidence to show that tropical legumes of the Aeschynomene genus which belong to the Dalbergoid legume clade use a different class of cysteine rich peptides (NCR-like) to govern bacteroid differentiation. This mechanism is similar to the one previously described in Medicago which was up to now assumed to be restricted to the advanced IRLC legume clade, to which it belongs. I have also shown that the Bradyrhizobium symbionts of Aeschynomene legumes possess a multidrug transporter, named BclA, which mediates the import of a diversity of peptides including NCR peptides. In the absence of this transporter, the rhizobia do not differentiate and do not fix nitrogen. BclA has a transmembrane domain of the same family as the transmembrane domain of the BacA transporter of Rhizobium and Sinorhizobium species which is known to be required in these rhizobia to respond to the NCR peptides of IRLC legumes. Again this is a mechanism which is analogous to the one described in S. meliloti the symbiont of Medicago.This study broaden our knowledge on the evolution of symbiosis by showing that the modus operandi involving peptides derived from innate immunity used by some legumes to keep their intracellular bacterial population under control is more widespread and ancient than previously thought and has been invented by evolution several times.

Identiferoai:union.ndltd.org:theses.fr/2015PA112113
Date18 September 2015
CreatorsGuefrachi, Ibtissem
ContributorsParis 11, Université de Carthage (Tunisie), Mergaert, Peter, Mars, Mohamed
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image, StillImage

Page generated in 0.0017 seconds