Return to search

Développement et analyse de méthodes de volumes finis

Ce document synthétise un ensemble de travaux portant sur le développement et l'analyse de méthodes de volumes finis utilisées pour l'approximation numérique d'équations aux dérivées partielles issues de la physique. Le mémoire aborde dans sa première partie des schémas colocalisés de type Godunov d'une part pour les équations de l'électromagnétisme, et d'autre part pour l'équation des ondes acoustiques, avec une étude portant sur la perte de précision de ce schéma à bas nombre de Mach. La deuxième partie est consacrée à la construction d'opérateurs différentiels discrets sur des maillages bidimensionnels relativement quelconques, en particulier très déformés ou encore non-conformes, et à leur utilisation pour la discrétisation d'équations aux dérivées partielles modélisant des phénomènes de diffusion, d'électrostatique et de magnétostatique et d'électromagnétisme par des schémas de type volumes finis en dualité discrète (DDFV) sur maillages décalés. La troisième partie aborde ensuite l'analyse numérique et les estimations d'erreur a priori et a posteriori associées à la discrétisation par le schéma DDFV de l'équation de Laplace. La quatrième et dernière partie est consacrée à la question de l'ordre de convergence en norme $L^2$ de la solution numérique du problème de Laplace, issue d'une discrétisation volumes finis en dimension un et en dimension deux sur des maillages présentant des propriétés d'orthogonalité. L'étude met en évidence des conditions nécessaires et suffisantes relatives à la géométrie des maillages et à la régularité des données du problème afin d'obtenir la convergence à l'ordre deux de la méthode.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00613239
Date04 May 2010
CreatorsOmnes, Pascal
PublisherUniversité Paris-Nord - Paris XIII
Source SetsCCSD theses-EN-ligne, France
LanguageFrench
Detected LanguageFrench
Typehabilitation ࠤiriger des recherches

Page generated in 0.0022 seconds