La thèse est consacrée à la modélisation discrète et continue des écoulements sanguins et des phénomènes connexes tels que la coagulation du sang et l'athérosclérose. Ce travail comprend l'élaboration des modèles mathématiques et numériques de la coagulation du sang, des simulations numériques et l'analyse mathématique d'un modèle d'inflammation chronique au cours d'athérosclérose. Une partie importante de la thèse est liée à la programmation, la mise en œuvre et l'optimisation des codes numériques. La partie principale de la thèse concerne la modélisation de la coagulation du sang in vivo tenant compte des écoulements sanguins, les réactions biochimiques dans le plasma et l'agrégation de plaquettes. La nouveauté principale de ce travail est l'élaboration d'un modèle hybride (discret-continu) de la coagulation du sang et de la formation de caillot sanguin dans le flux. La partie théorique de la thèse est consacrée à l'analyse mathématique d'un modèle d'inflammation chronique liée à l'athérosclérose. Les simulations numériques réalisées dans le cadre de cette thèse impliquent l'élaboration des algorithmes numériques pour les modèles mathématiques et le d´développement des logiciels. Vu le fait que les simulations numériques ont été coûteuse en temps de calcul, des efforts considérables ont été consacrés à la parallélisation des logiciels et à leur optimisation / The thesis is devoted to discrete and continuous modelling of blood flows and related phenomena such as blood coagulation and atherosclerosis. It includes the development of mathematical and numerical models of blood coagulation, numerical simulations and the mathematical analysis of a model problem of chronic inflammation during atherosclerosis. The main part of the thesis concerns modelling of blood coagulation in vivo which takes into account blood flows, biochemical reactions in plasma and platelet aggregation. The main novelty of this work is the development of a hybrid (discrete-continuous) model of blood coagulation and clot formation in flow. The model is used to study several aspects of blood coagulation in flow : platelet aggregation and its interaction with coagulation pathways, influence of the flow speed on the clot development, a possible mechanism by which clot stops growing. The theoretical part of the thesis is devoted to the mathematical analysis of a model of chronic inflammation related to atherosclerosis. In this thesis we study a model problem which describes the propagation of a reaction-diffusion wave in the 2D case with non-linear boundary conditions. For that we use the Leray-Schauder method and a priori estimates of solutions in order to prove the existence of waves in the bistable case. Numerical simulations carried out in the framework of this thesis were based on the numerical implementation of the corresponding models and on the software development. Since the numerical simulations were computationally expensive, a substantial effort was directed to software parallelization and optimization
Identifer | oai:union.ndltd.org:theses.fr/2014LYO10021 |
Date | 12 February 2014 |
Creators | Tosenberger, Alen |
Contributors | Lyon 1, Volpert, Vitaly |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | English |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds