On se place dans le cadre de<br />l'estimation non paramétrique pour les problèmes inverses, où une<br />fonction inconnue subit une transformation par un opérateur<br />linéaire mal posé, et où l'on en observe une version bruitée par<br />une erreur aléatoire additive. Dans ce type de problèmes, les<br />méthodes d'ondelettes sont très utiles, et ont été largement<br />étudiées. Les méthodes développées dans cette thèse s'en<br />inspirent, mais consistent à s'écarter des bases d'ondelettes<br />"classiques", ce qui permet d'ouvrir de nouvelles perspectives<br />théoriques et pratiques. Dans l'essentiel de la thèse, on utilise<br />un modèle de type bruit blanc. On construit des estimateurs<br />utilisant des bases qui d'une part sont adaptées à l'opérateur, et<br />d'autre part possèdent des propriétés analogues à celles des<br />ondelettes. On en étudie les propriétés minimax dans un cadre<br />large, et l'on implémente ces méthodes afin d'en étudier leurs<br />performances pratiques. Dans une dernière partie, on utilise un<br />modèle de regression en design aléatoire, et on étudie les<br />performances numériques d'un estimateur reposant sur la<br />déformation des bases d'ondelettes.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00121197 |
Date | 08 December 2006 |
Creators | Willer, Thomas |
Publisher | Université Paris-Diderot - Paris VII |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0017 seconds