L’imagerie par résonance magnétique de diffusion (IRMd) est une technique non-invasive permettant d’accéder à l'information structurelle des tissus biologiques à travers l’étude du mouvement de diffusion des molécules d’eau dans les tissus. Ses applications sont nombreuses en neurologie pour le diagnostic de certaines anomalies cérébrales. Cependant, en raison du mouvement cardiaque, l’utilisation de cette technique pour accéder à l’architecture du cœur in vivo représente un grand défi. Le mouvement cardiaque a été identifié comme une des sources majeures de perte du signal mesuré en IRM de diffusion. A cause de la sensibilité au mouvement, il est difficile d’évaluer dans quelle mesure les caractéristiques de diffusion obtenues à partir de l’IRM de diffusion reflètent les propriétés réelles des tissus cardiaques. Dans ce cadre, la modélisation et la simulation numérique du signal d’IRM de diffusion offrent une approche alternative pour aborder le problème. L’objectif de cette thèse est d’étudier numériquement l’influence du mouvement cardiaque sur les images de diffusion et de s’intéresser à la question d’atténuation de l’effet du mouvement cardiaque sur le signal d’IRM de diffusion. Le premier chapitre est consacré à l’introduction du principe physique de l'imagerie par résonance magnétique(IRM). Le deuxième chapitre présente le principe de l’IRM de diffusion et résume l’état de l’art des différents modèles proposés dans la littérature pour modéliser le signal d’IRM de diffusion. Dans le troisième chapitre un modèle modifié de l’équation de Bloch-Torrey dans un domaine qui se déforme au cours du temps est introduit et étudié. Ce modèle représente une généralisation de l’équation de Bloch-Torrey utilisée dans la modélisation du signal d’IRM de diffusion dans le cas sans mouvement. Dans le quatrième chapitre, l’influence du mouvement cardiaque sur le signal d’IRM de diffusion est étudiée numériquement en utilisant le modèle de Bloch-Torrey modifié et un champ de mouvement analytique imitant une déformation réaliste du cœur. L’étude numérique présentée, permet de quantifier l’effet du mouvement sur la mesure de diffusion en fonction du type de la séquence de codage de diffusion utilisée, de classer ces séquences en terme de sensibilité au mouvement cardiaque et d’identifier une fenêtre temporelle par rapport au cycle cardiaque où l’influence du mouvement est réduite. Enfin, dans le cinquième chapitre, une méthode de correction de mouvement est présentée afin de minimiser l’effet du mouvement cardiaque sur les images de diffusion. Cette méthode s’appuie sur un développement singulier du modèle de Bloch-Torrey modifié pour obtenir un modèle asymptotique qui permet de résoudre le problème inverse de récupération puis correction de la diffusion influencée par le mouvement cardiaque. / Diffusion magnetic resonance imaging (dMRI) is a non-invasive technique allowing access to the structural information of the biological tissues through the study of the diffusion motion of water molecules in tissues. Its applications are numerous in neurology, especially for the diagnosis of certain brain abnormalities, and for the study of the human cerebral white matter. However, due to the cardiac motion, the use of this technique to study the architecture of the in vivo human heart represents a great challenge. Cardiac motion has been identified as a major source of signal loss. Because of the sensitivity to motion, it is difficult to assess to what extent the diffusion characteristics obtained from diffusion MRI reflect the real properties of the cardiac tissue. In this context, modelling and numerical simulation of the diffusion MRI signal offer an alternative approach to address the problem. The objective of this thesis is to study numerically the influence of cardiac motion on the diffusion images and to focus on the issue of attenuation of the cardiac motion effect on the diffusion MRI signal. The first chapter of this thesis is devoted to the introduction of the physical principle of nuclear magnetic resonance (NMR) and image reconstruction techniques in MRI. The second chapter presents the principle of diffusion MRI and summarizes the state of the art of the various models proposed in the litera- ture to model the diffusion MRI signal. In the third chapter a modified model of the Bloch-Torrey equation in a domain that deforms over time is introduced and studied. This model represents a generalization of the Bloch-Torrey equation used to model the diffusion MRI signal in the case of static organs. In the fourth chapter, the influence of cardiac motion on the diffusion MRI signal is investigated numerically by using the modified Bloch-Torrey equation and an analytical motion model mimicking a realistic deformation of the heart. The numerical study reported here, can quantify the effect of motion on the diffusion measurement depending on the type of the diffusion coding sequence. The results obtained allow us to classify the diffusion encoding sequences in terms of sensitivity to the cardiac motion and identify for each sequence a temporal window in the cardiac cycle in which the influence of motion is reduced. Finally, in the fifth chapter, a motion correction method is presented to minimize the effect of cardiac motion on the diffusion images. This method is based on a singular development of the modified Bloch-Torrey model in order to obtain an asymptotic model of ordinary differential equation that gives a relationship between the true diffusion and the diffusion reconstructed in the presence of motion. This relationship is then used to solve the inverse problem of recovery and correction of the diffusion influenced by the cardiac motion.
Identifer | oai:union.ndltd.org:theses.fr/2016LYSEI120 |
Date | 21 November 2016 |
Creators | Mekkaoui, Imen |
Contributors | Lyon, Pousin, Jérôme |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0031 seconds