在線性迴歸分析中,資料的不適當,常導致研究者選擇了不當的模式,為避免此缺失,在分析資料前須先做好診斷工作。本文中將從貝氏觀點提出一些不同的診斷方法以供參考。首先推導出均數移動參數a=(a<sub>1</sub>,…,a<sub>k</sub>)'的事後分配,並利用a'a/k的事後均數診斷出不當資料點。接著,考慮在個別模式下以β事後分配之總變異及廣義變異為標準,診斷出離群值及具有潛在影響力之觀測值。最後,分別利用(i)β的事後分配(ii)σ<sup>2</sup>的事後分配(iii)(β,σ<sup>2</sup>)的聯合事後分配,推導出對應的對稱均方差以做為診斷標準。 / In this thesis, some different diagnostic methodologies for outliers and influential observations from Bayesian point of view are proposed. We firstly derive the marginal posterior distribution of the mean-shift parameter a=(a<sub>1</sub>,a<sub>k</sub>)<sup>1</sup>, then use the posterior mean of a<sup>1</sup>a/k to detect the spurious data items. Secondly, we use the posterior total variance and generalized variance of β as diagnostic criterions for outliers and influential observations. Finally, we utilize (i) the posterior distribution of β, (ii) the posterior distribution of σ<sup>2</sup>, and (iii) the joint posterior distribution of β, σ<sup>2</sup> to find their corresponding symmetric mean square differences , which can be used as diagnostic criterions.
Identifer | oai:union.ndltd.org:CHENGCHI/B2002003906 |
Creators | 謝季英, Shieh, Jih Ing |
Publisher | 國立政治大學 |
Source Sets | National Chengchi University Libraries |
Language | 中文 |
Detected Language | English |
Type | text |
Rights | Copyright © nccu library on behalf of the copyright holders |
Page generated in 0.0018 seconds