• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Diagnostico de influencia em modelos de volatilidade estocastica / Influence diagnostics in stochastic volatility models

Martim, Simoni Fernanda 14 August 2018 (has links)
Orientadores: Mauricio Enrique Zevallos Herencia, Luiz Koodi Hotta / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-14T12:07:35Z (GMT). No. of bitstreams: 1 Martim_SimoniFernanda_M.pdf: 2441806 bytes, checksum: 4d34450ac590270c90e7eb66a293b51b (MD5) Previous issue date: 2009 / Resumo: O diagnóstico de modelos é uma etapa fundamental para avaliar a qualidade do ajuste dos modelos. Nesse sentido, uma das ferramentas de diagnóstico mais importantes é a análise de influência. Peña (2005) introduziu uma forma de analisar a influência em modelos de regressão, a qual avalia como cada ponto é influenciado pelos outros na amostra. Essa estratégia de diagnóstico foi adaptada por Hotta e Motta (2007) na análise de influência dos modelos de volatilidade estocástica univariados. Nesta dissertação, é realizado um estudo de diagnóstico de influência para modelos de volatilidade estocástica univariados assimétricos, assim como para modelos de volatilidade estocástica multivariados. As metodologias propostas são ilustradas através da análise de dados simulados e séries reais de retornos financeiros. / Abstract: Model diagnostics is a key step to assess the quality of fitted models. In this sense, one of the most important tools is the analysis of influence. Peña (2005) introduced a way of assessing influence in linear regression models, which evaluates how each point is influenced by the others in the sample. This diagnostic strategy was adapted by Hotta and Motta (2007) on the influence analysis of univariate stochastic volatility models. In this dissertation, it is performed a study of influence diagnostics of asymmetric univariate stochastic volatility models as well as multivariate stochastic volatility models. The proposed methodologies are illustrated through the analysis of simulated data and financial time series returns. / Mestrado / Series Temporais Financeiras / Mestra em Estatística
2

Diagnóstico em modelos de regressão linear e não-linear com erros simétricos / Diagnostic in linear and nonlinear regression models with symmetrical errors

Reis, Sandra Santos dos, 1983- 24 August 2018 (has links)
Orientador: Mauricio Enrique Zevallos Herencia / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica / Made available in DSpace on 2018-08-24T02:03:22Z (GMT). No. of bitstreams: 1 Reis_SandraSantosdos_M.pdf: 1897835 bytes, checksum: 24e50267c694dbcb380ddcfc9d7bdace (MD5) Previous issue date: 2013 / Resumo: Neste trabalho discutimos a detecção de observações influentes em modelos simétricos lineares e não lineares. Em primeiro lugar é realizado um estudo de simulação para avaliar o desempenho de três métodos de estimação em dados gerados por quatro situações: sem observações influentes, com outliers na variável resposta, com observações influentes de média alavancagem e com observações influentes de alta alavancagem. São analisados dois métodos de máxima verossimilhança e um método robusto. Foram considerados modelos de regressão linear e não linear com erros logísticos tipo II e t-Student. Em segundo lugar é discutida detecção de observações influentes mediante a distância de Cook generalizada, a estatística de Peña e a estatística de Andrews-Pregibon. Em particular é discutida a conveniência de utilizar a metodologia de limiares para caracterizar uma observação como influente ou não influente, assim como o efeito da estimação de parâmetros na construção de limiares. Estas medidas foram aplicadas a conjuntos de dados reais e simulados considerando o ajuste de alguns modelos simétricos com uma adaptação no método de estimação scoring de Fisher / Abstract: We discuss the detection of influential observations in symmetrical linear and nonlinear regression models. First a simulation study is conducted to evaluate the performance of three estimation methods on data generated by four situations: without influential observations with outliers in the response variable, with influential observations average leverage and influential observations with high leverage. Two methods of maximum likelihood and robust method are analyzed. We considered linear and nonlinear regression models with logistic-II and Student-t errors. Secondly detection of influential observations by generalized Cook's distance, the statistic PeÃ?a and Andrews - Pregibon statistic is discussed. In particular the convenience of using the methodology to characterize a threshold observation as influential or not influential, as well as the effect of parameter estimation in the construction of thresholds is discussed. These measures were applied to sets of real and simulated data considering the fit of some symmetrical regression models with an adaptation estimation method of Fisher scoring / Mestrado / Estatistica / Mestra em Estatística
3

從貝氏觀點診斷離群值及具有影響力之觀察值 / Some diagnostics for outliers and influential observations from Bayesian point of view

謝季英, Shieh, Jih Ing Unknown Date (has links)
在線性迴歸分析中,資料的不適當,常導致研究者選擇了不當的模式,為避免此缺失,在分析資料前須先做好診斷工作。本文中將從貝氏觀點提出一些不同的診斷方法以供參考。首先推導出均數移動參數a=(a<sub>1</sub>,…,a<sub>k</sub>)'的事後分配,並利用a'a/k的事後均數診斷出不當資料點。接著,考慮在個別模式下以β事後分配之總變異及廣義變異為標準,診斷出離群值及具有潛在影響力之觀測值。最後,分別利用(i)β的事後分配(ii)σ<sup>2</sup>的事後分配(iii)(β,σ<sup>2</sup>)的聯合事後分配,推導出對應的對稱均方差以做為診斷標準。 / In this thesis, some different diagnostic methodologies for outliers and influential observations from Bayesian point of view are proposed. We firstly derive the marginal posterior distribution of the mean-shift parameter a=(a<sub>1</sub>,a<sub>k</sub>)<sup>1</sup>, then use the posterior mean of a<sup>1</sup>a/k to detect the spurious data items. Secondly, we use the posterior total variance and generalized variance of β as diagnostic criterions for outliers and influential observations. Finally, we utilize (i) the posterior distribution of β, (ii) the posterior distribution of σ<sup>2</sup>, and (iii) the joint posterior distribution of β, σ<sup>2</sup> to find their corresponding symmetric mean square differences , which can be used as diagnostic criterions.

Page generated in 0.1354 seconds