L'hypercholestérolémie familiale autosomique dominante (ADH) est un trouble génétique caractérisé par des taux élevés de lipoprotéine de basse densité (LDL) plasmatique. Un niveau élevé de LDL plasmatique est connu pour contribuer au développement de l’athérosclérose, une cause majeure des crises cardiaques et des accidents vasculaires cérébraux. Le récepteur des LDL (LDLR) est la principale voie d’élimination des particules de LDL. En revanche, la proprotéine convertase subtilisine/kexine de type 9 (PCSK9), une glycoprotéine sécrétée par le foie, se lie au LDLR et augmente sa dégradation dans les lysosomes, ce qui entraîne une augmentation de LDL plasmatique et un risque plus élevé de maladie cardiovasculaire. En outre, des mutations de-perte-de fonction de PCSK9 peuvent considérablement réduire les niveaux de LDL plasmatiques et réduire le risque de maladie coronarienne jusqu'à ~ 88%. Toutes ces découvertes ont fait de PCSK9 une cible importante pour le traitement de l'hypercholestérolémie. Des anomalies génétiques du LDLR, de PCSK9 ou de l’apolipoprotéine B (apoB), le ligand du LDLR, peuvent provoquer l'ADH, mais dans certaines familles ADH il n'a pas été possible d'identifier de mutation de ces gènes, suggérant que d'autres anomalies génétiques pourraient également être impliquées dans la maladie.
Dans la présente thèse, qui repose sur deux études (articles), nous avons étudié les protéines d’interaction de PCSK9 (premier article, chapitre 2) et l'effet de PCSK9 sur l'athérosclérose (deuxième article, chapitre 3). Dans notre première étude, l'analyse par spectrométrie de masse des protéines interagissant avec PCSK9 a révélé que la Golgi glycoprotéine 1 (GLG1) est une nouvelle protéine d’interaction de PCSK9. Leur co-immunoprécipitation révélée par immunobuvardage et leur co-localisation par microscopie confocale par immunofluorescence ont confirmé que GLG1 est un partenaire de PCSK9. De plus, nos résultats ont montré que GLG1 interagit aussi avec le LDLR et l'apoB. En utilisant un modèle murin, nous avons montré des taux sanguins plus faibles de PCSK9, de cholestérol et de triglycérides chez les souris knockdown GLG1. De plus, le déficit en GLG1 a réduit l'activité de la protéine de transfert des triglycérides microsomales (MTP) et induit l'agrégation périnucléaire de l'apoB, réduisant ainsi la sécrétion d'apoB. Dans notre deuxième étude, nous avons développé un modèle d'athérosclérose chez la souris pour étudier l'effet de l'absence de PCSK9 sur les plaques d’athérosclérose. Nous avons montré que la surexpression d'un mutant gain-de-fonction de PCSK9 dans le foie de souris a accéléré le développement de plaques d'athérosclérose dans la racine aortique et que celles-ci ont ensuite été réduites en induisant la régulation négative de PCSK9 en utilisant le système Tet-on.
En conclusion, nous avons contribué à l'identification d'une nouvelle protéine interagissant avec PCSK9, GLG1, qui régule le taux plasmatique de cholestérol et représente une cible potentielle pour le traitement de l'hypercholestérolémie. Nous avons également démontré que la modulation du gène PCSK9 régule directement le niveau de plaques d'athérosclérose dans la racine de l'aorte. Ces études aideront à développer des thérapies efficaces pour réduire l'hypercholestérolémie et le risque de maladie cardiovasculaire / Autosomal dominant hypercholesterolemia (ADH) is a genetic disorder characterized by high plasma low-density lipoprotein (LDL) cholesterol levels. Elevated plasma LDL level is known to contribute to the development of atherosclerosis, a leading cause of heart attack and stroke. Liver LDL receptor (LDLR) acts as a primary pathway for endocytosis and clearance of LDL particles. In contrast, PCSK9, a liver-secreted glycoprotein, binds to LDLR and enhances its lysosomal degradation, resulting in increased plasma LDL concentrations and a higher risk of cardiovascular disease. Genetic defects in LDLR, PCSK9, and apolipoprotein B (apoB), the ligand of LDLR, can cause ADH, but in some ADH-families no mutations can be found in these genes, suggesting that other gene defects may also be involved in ADH. Furthermore, loss-of-function mutations in PCSK9 can greatly reduce plasma LDL levels and lower risk of coronary heart disease by up to ~88%. All these findings have made PCSK9 an attractive target for the treatment of hypercholesterolemia.
In the present thesis, which is based on two studies (articles), we investigated protein interactors of PCSK9 (first article, chapter 2) and the effect of PCSK9 on atherosclerosis (Second article, chapter 3). In our first study, mass spectrometry analysis of PCSK9 interacting proteins revealed that Golgi glycoprotein 1 (GLG1) is a novel PCSK9 interactor. Co-immunoprecipitation, Western blotting, and colocalization by confocal immunofluorescence microscopy confirmed that GLG1 is an endogenous PCSK9 binding partner. We also demonstrated that LDLR and apoB interact with GLG1. Using a mouse model, we found lower levels of circulating PCSK9, cholesterol, and triglycerides in Glg1 knockdown mice. Moreover, GLG1 deficiency reduced microsomal triglyceride transfer protein (MTP) activity and induced perinuclear aggregation of apoB, thereby, reducing apoB secretion. In our second study, we developed a mouse model of atherosclerosis to investigate the effect of PCSK9 modulation on the regression of atherosclerotic plaques. We showed that overexpression of a PCSK9 gain-of-function in mouse liver accelerated the development of atherosclerotic lesions in the aortic root, which were then reduced by inducing PCSK9 downregulation using a Tet-on system.
In conclusion, we have contributed to the identification of a novel PCSK9 interacting protein, GLG1, which regulates plasma level of cholesterol and represents a potential target for hypercholesterolemia treatment. We also demonstrated that PCSK9 gene modulation directly regulates the level of atherosclerotic plaques in the aortic root. We showed in our study that the wild-type mice, overexpressing PCSK9-D377Y in an inducible manner, is a useful mouse model for understanding the molecular role of PCSK9 on atherosclerotic plaques development. These studies will help to develop effective therapies to reduce hypercholesterolemia and the risk of cardiovascular disease.
Identifer | oai:union.ndltd.org:umontreal.ca/oai:papyrus.bib.umontreal.ca:1866/23540 |
Date | 04 1900 |
Creators | Samami, Samaneh |
Contributors | Mayer, Gaétan, Rhéaume, Éric |
Source Sets | Université de Montréal |
Language | English |
Detected Language | French |
Type | Thèse ou mémoire / Thesis or Dissertation |
Page generated in 0.0028 seconds