Return to search

Etude prospective de la topologie MMC et du packaging 3D pour la réalisation d’un variateur de vitesse en moyenne tension / Prospective study on medium-voltage drive with MMC Topology and 3D packaging power modules

La topologie modulaire multiniveaux est une structure d'électronique de puissance construite par la mise en série de sous-modules identiques, composés chacun d'une cellule de commutation et d'un condensateur. Un tel système de conversion pouvant comporter un grand nombre de cellules permet d'augmenter le rendement global et la qualité des signaux en sortie. De plus, il permet d'utiliser des composants basse tension présentant un meilleur comportement dynamique et un rapport qualité-prix bien supérieur aux composants moyenne tension. Il permet également, par rapport aux structures conventionnelles, une grande souplesse pour la conception et la fabrication du fait de son aspect modulaire, tout en s'affranchissant d'un transformateur volumineux et onéreux en entrée. Comparé aux autres types de topologies, avantageuses avec un nombre limité de niveaux, le convertisseur modulaire multiniveaux semble être mieux adapté aux applications en moyenne et haute tensions, qui sont tributaires de l'association des composants de puissance. Néanmoins, pour la variation de vitesse, un certain nombre de défis technologiques ont été mis en évidence, compte tenu du fonctionnement particulier de l'onduleur modulaire multiniveaux et des contraintes imposées par l'opération en très basse fréquence. En le fonctionnement normal, la forme d'onde des courants internes, contrairement aux autres types de topologies, n'est pas symétrique en raison de la distribution du courant direct dans chaque bras. Cela entraîne une disparité significative en termes de dissipation thermique parmi les interrupteurs constituant un sous-module. Avec le choix d'une technologie de packaging 3D, la possibilité de refroidir les puces semi-conductrices en double-face offre une meilleure capacité de refroidissement et une nouvelle perspective de conception des modules pour cette application. Un nouveau concept de report de puces est présenté et un prototype de tel module a été réalisé, modélisé et caractérisé. Il permet d'équilibrer globalement la chaleur dissipée par les puces sur les deux faces du module, problème inhérent à l'emploi de structure 3D. Conjugué à la mutualisation d'un interrupteur par deux puces en parallèle, la nouvelle architecture a aussi pour objectif d'équilibrer le refroidissement double-face dans le temps. En effet, pour les opérations en basse fréquence, les interrupteurs fonctionnent en régime instationnaire avec de forte variation de température, il n'est donc plus possible de compenser les effets thermomécaniques de chaque composant l'un par l'autre, comme en régime stationnaire et avec un positionnement planaire des puces. D'autre part, d'un point de vu systémique, la stratégie de commande et le dimensionnement des condensateurs flottants de l'onduleur modulaire multiniveaux sont deux aspects intimement liés. En effet, les condensateurs flottants sont le siège d'ondulations de tension de très forte amplitude. Cela a pour effet de déstabiliser l'onduleur, voire de provoquer la destruction des composants en atteignant des niveaux de tension trop élevés. Ainsi, des contrôleurs judicieusement conçus permettent de réduire les ondulations indésirables, et a fortiori, d'embarquer des capacités moins importantes dans le système, tant que ces dernières sont inversement proportionnelles à l'ondulation de la tension. Afin d'avoir une compréhension approfondie sur les dynamiques régissant le convertisseur modulaire multiniveaux, un modèle dynamique global basé sur la représentation d'état a été établi. Bien que cette représentation soit limitée à l'harmonique 2 des grandeurs caractéristiques, elle permet une fidèle interprétation du mécanisme de conversion sans passer par des modèles énergétiques bien plus complexes à exploiter, et de proposer des lois de commande montrant leur efficacité notamment autour de la fréquence nominale. Cela a été vérifié sur une maquette de puissance réalisée dans le cadre de cette thèse. / Multilevel modular topology converts energy between two direct and alternative endings. This structure is constructed by the series connection of identical sub-modules, composed of a switching cell and a floating capacitor, and with arm inductors. Such a conversion system may reach a large number of levels increases the overall efficiency and quality of the output signals. In addition, it allows the use of low voltage components with better dynamics and cost effectiveness above the high voltage components. It also allows flexibility in the work of design and manufacture due to its modularity, while avoiding a bulky and expensive input transformer, regarding the conventional technology. Compared with other types of topologies, advantageous with a limited number of levels, the modular multilevel converter seems to be more suited for medium and high voltage applications, which are dependent on the association of power components. However, for variable speed drive application, a certain number of technological challenges have been highlighted, given the specific functional characteristics of the modular multilevel inverter and the constraints imposed by the very low frequency operation. On the one hand, for the normal operation of a multilevel modular converter, the waveform of the internal currents, in contrast to other types of topologies, is not symmetrical due to the distribution of the direct current in each phase leg. This may entail a significant disparity in terms of heat dissipation within the switching devices constituting a sub-module. Therefore, the problem of thermal management of active components is emphasized in the use of a modular multilevel converter. With the choice of a 3D packaging technology, interconnection by bumps, the ability to cool the semiconductor chips through the both sides of a module offers better cooling effects and a new perspective to design the power module for the studied structure. The concept of laying chips on both the two substrates of module without facing each other provides overall balanced dissipation in the space and permit to overcome the unbalanced heat distribution induced by bumps. Combined with the sharing of a switch by two chips in parallel, the proposal of the new architecture for 3D power module also aims to balance the double-sided cooling in the time range. Indeed, for the very low frequency operation, the switches operate in unsteady state where each switch has its own thermal behavior, it is no longer possible to compensate the thermo-mechanical constraints over each component with the help of the others, as in steady state and with a planar chips positioning scheme. On the other hand, from a systemic point of view, the control strategy and the dimensioning of floating capacitors of modular multilevel inverter are two interrelated aspects. Because the floating capacitors, having the role of energy sources, are loaded / unloaded through the modulation period, which causes very high voltage ripples across those capacitors with a very low frequency. This will destabilize the inverter and even provoke the destruction of components by approaching too high voltage levels. Thus, wisely designed controllers reduce unwanted ripples and, furthermore, allow embarking much smaller capacity in the system, as they are inversely proportional to the voltage ripple. In order to have a thorough understanding on the dynamics governing the modular multilevel converter, a comprehensive dynamic model based on state-space representation was established. Although this representation is limited to the second harmonic of characteristic variable, it allows a faithful interpretation of the conversion mechanism without using energy models, more complex to operate, and control laws can also be proposed and their effectiveness around the nominal frequency has been underlined. Concerning the very low frequency operations, another solution has been proposed and is ongoing patent pending.

Identiferoai:union.ndltd.org:theses.fr/2015GREAT027
Date08 April 2015
CreatorsWu, Cong Martin
ContributorsGrenoble Alpes, Avenas, Yvan, Wang, Miao-Xin
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0025 seconds