Return to search

The gravitational path integral in eary universe cosmology

Die Pfadintegral-Quantisierung der semi-klassischen Gravitation ist einer der vielversprechendsten Ansätze zur Vereinheitlichung von Quantenmechanik und allgemeiner Relativitätstheorie. In dieser Arbeit untersuchen wir die Konsequenzen der Anwendung dieses Pfadintegralansatzes auf die Kosmologie des sehr frühen Universums.
Im ersten Teil konzentrieren wir uns auf den no-boundary proposal, der einen nicht-singulären Anfang des Universums konstruiert, indem er sich auf das gravitative Pfadintegral der allgemeinen Relativitätstheorie stützt. Wir beweisen, dass die no-boundary Lösung das Hinzufügen von Korrekturen höherer Ordnung zur Gravitationswirkung überlebt. Unsere Analyse deutet also darauf hin, dass semi-klassische Ergebnisse auch in der perturbative Störungstheorie der vollständigen Quantengravitation gültig sind. Anschließend beziehen wir ein Skalarfeld in den neuen no-boundary proposal ein, der im Lorentz-Formalismus als Summe über Geometrien mit festem Anfangsimpuls definiert ist. Unsere Ergebnisse sind der Schlüssel zur Bestätigung der Gültigkeit des neuen no-boundary proposals, denn Skalarfelder sind das einfachste Beispiel für Materiefelder, die in einer realistischen Theorie des frühen Universums enthalten sein müssen.
Der zweite Teil der Arbeit befasst sich mit der Pfadintegralansatz für allgemeineren Modellen des frühen Universums. Zunächst testen wir die Gültigkeit des semi-klassischen Limits dieser Modelle mit dem Kriterium der endlichen Amplitude, das z.B. Theorien höherer Ordnung der Gravitation stark einschränkt und den no-boundary proposal sowie emergente Universen begünstigt. Schließlich wenden wir das Kriterium der komplexen Metrik von Kontsevich und Segal auf kosmologische Hintergründe an. Im Kontext der Quantenkosmologie angewandt, führt es zu einem neuen Verständnis des gravitativen Pfadintegrals im no-boundary proposal und schließt generische quantum bounces aus. / The path integral quantization of gravity is one of the most promising approaches to unify quantum mechanics and general relativity. This thesis pursues the consequences of the path integral approach applied to the cosmology of the very early universe, for which this unification is crucial.
The first part focuses on the no-boundary proposal, which constructs a non-singular beginning of the universe by relying on the gravitational path integral of general relativity. We prove that the no-boundary solution survives the addition of higher-order corrections to the gravity action, usually found in high-energy completions of general relativity such as string theory. This indicates that semi-classical results may still hold at the perturbative level of full quantum gravity. We then include a scalar field in the new no-boundary proposal, defined in the Lorentzian formalism as a sum over geometries with fixed initial momentum flow. Our results are key to confirming the viability of the proposal, but also highlight the non-locality puzzle of the no-boundary proposal in the presence of matter fields, for which we offer new perspectives.
The second part of the thesis deals with the path integral treatment of more general early universe models. First we test the validity of the semi-classical limit of these models with a finite amplitude criterion, which severely constrains e.g. higher-order theories of gravity and globally favors the no-boundary proposal and emergent-like universes. At last, we apply Kontsevich and Segal’s complex metric criterion to cosmological backgrounds. This criterion tests the path integral convergence of any quantum field theory on a given metric background. Applied in the context of quantum cosmology, it leads to a new understanding of the path integral in the no-boundary proposal, rules out generic quantum bounces, and stresses the limitation of minisuperspace for classical transitions in de Sitter spacetime.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/27654
Date14 July 2023
CreatorsJonas, Caroline Cecile C.
ContributorsNicolai, Hermann, Hohm, Olaf, Kiefer, Claus
PublisherHumboldt-Universität zu Berlin
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageEnglish
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
Rights(CC BY 4.0) Attribution 4.0 International, https://creativecommons.org/licenses/by/4.0/

Page generated in 0.0025 seconds