Return to search

Technology-independent CMOS op amp in minimum channel length

The performance of analog integrated circuits is dependent on the technology. Digital circuits are scalable in nature, and the same circuit can be scaled from one technology to another with improved performance. But, in analog integrated circuits, the circuit components must be re-designed to maintain the desired performance across different technologies. Moreover, in the case of digital circuits, minimum feature-size (short channel length) devices can be used for better performance, but analog circuits are still being designed using channel lengths larger than the minimum feature sizes.
The research in this thesis is aimed at understanding the impact of technology scaling and short channel length devices on the performance of analog integrated circuits. The operational amplifier (op amp) is chosen as an example circuit for investigation. The performance of the conventional op amps are studied across different technologies for short channel lengths, and techniques to develop technology-independent op amp architectures have been proposed. In this research, three op amp architectures have been developed whose performance is relatively independent of the technology and the channel length. They are made scalable, and the same op amp circuits are scaled from a 0.25 um CMOS onto a 0.18 um CMOS technology with the same components. They are designed to achieve large small-signal gain, constant unity gain-bandwidth frequency and constant phase margin. They are also designed with short channel length transistors. Current feedback, gm-boosted, CMOS source followers are also developed, and they are used in the buffered versions of these op amps.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/5101
Date13 July 2004
CreatorsSengupta, Susanta
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Format5311897 bytes, application/pdf

Page generated in 0.002 seconds