Le graphène est une nanoparticule bidimensionnelle d'épaisseur atomique présentant des propriétés uniques, qu'elles soient mécaniques, électriques ou thermiques. Ceci ajouté à une faible densité et une très grande surface spécifique, fait que l'ajout de graphène et de nanoparticules dérivées (oxyde de graphène, graphite exofilé) pour renforcer des matrices polymères est devenu un sujet d'études d'intérêt majeur dans le domaine des nanocomposites. Cependant, l'influence de la variation de la viscoélasticité de la matrice due à l'ajout de graphène ainsi que la mécanique interfaciale reste aujourd'hui peu étudiée. De plus, il n'existe aujourd'hui pas de procédé permettant d'obtenir des nanocomposites présentant du graphène dans le plan orienté dans une matrice polymère afin de réaliser un renforcement à deux dimensions. Ce travail de thèse est composé principalement de trois projets portant sur ces problèmes.La première partie de ce travail se concentre sur la façon d'utiliser l'approche micromécanique viscoélastiques pour soustraire l'effet de changement de Tg pour corriger la rigidité apparente de nanocomposites d'oxyde de graphène. On a ainsi trouvé que l'oxyde de graphène rigidifie « indirectement » les matrices polymères en augmentant de manière significative la Tg de la matrice, ce qui modifie largement la viscoélasticité du matériau. Le mécanisme de renforcement est ainsi largement causé par cet effet plutôt que du fait de la rigidité de l'oxyde de graphène lui-même.La deuxième partie se concentre sur l'utilisation d'un procédé de mise en œuvre innovant, la coextrusion multinanocouches, ou assemblage forcé, pour créer des films nanocomposites constitués de couches alternées de polymères et de polymères chargés de nanoplaquettes de graphène orientées. Cette orientation est induite par le nanoconfinement imposé par le procédé. La morphologie des couches (35 ~ 40 nm d'épaisseur) contenant du graphène orienté a été étudiée par microscopie électronique. Les propriétés mécaniques des matériaux ont été déterminées et le renforcement bidimensionnel a pu être corrélé à une orientation (imparfaite) des nanoplaquettes de graphène dans les films stratifiés.La troisième partie se concentre sur l'utilisation de la méthode de l'inflation de nano-bulle pour obtenir les réponses mécaniques d'un « nano-sandwich » (nanofilm de polymère / feuille de graphène / nanofilm de polymère). Aux petites déformations, des renforts mécaniques significatifs ont été observées pour le système PEMA / graphène, tant à l'état caoutchouteux qu'à l'état vitreux. Les mécanismes d'interface entre le graphène et les polymères ont été étudiés et un glissement interfacial a été observé. / Graphene is an atomically thick, two-dimensional nano-sheet with advanced mechanical, electrical, and thermal properties. As a result, the addition of graphene and graphene derivative nanoparticles to polymer matrices has been a major strategy towards development of new materials in the field of composites. However, from a fundamental point of view, the origins of the advanced properties of graphene-based nanocomposites have been little investigated. In particular, changes in the viscoelastic properties of the polymer matrix due to specific interactions between the polymer and the graphene reinforcing elements can cause higher than expected apparent reinforcement. In addition, there is little work on characterizing the strength of the interface between the graphene used for reinforcement and the polymer matrixes. From a more engineering point of view, the design of polymer nanocomposites made of in-plane oriented graphene to create a two-dimensionally reinforced structure has also not been previously undertaken. The present dissertation is composed of three major works focusing on these problems.The first part focuses on how to use a viscoelastic micromechanics approach to account for the effects of glass transition temperature Tg changes to correct the apparent stiffening of graphene oxide nanocomposites. It is found that graphene oxide stiffens the polymer matrices by increasing the Tg, which significantly modifies their thermo-viscoelasticity. This leads to apparent reinforcements that are not due to the stiffness of the graphene oxide itself, and largely explains anomalously high moduli reported in the literature for such graphene oxide/polymer matrix nanocomposites.The second part focuses on a forced assembly multi-layer co-extrusion method to create films made of alternating layers of neat polymer / oriented graphene nanoplatelet filled polymer. The morphology of the layers (35 ~ 40 nm thick) containing oriented graphene was established by electron microscopy. Mechanical properties of the materials were determined and the two-dimensional stiffening could be related to the oriented graphene nanoplatelets in the layered films. Taking into account the change of Tg, more than 100% intrinsic reinforcement was estimated for 2 wt % of graphene in the nanolayers. The results were analyzed and interpreted via an analytical model based on Mori-Tanaka analysis.The third part focuses on extending a nano-bubble inflation method to the investigation of a novel graphene nano-sandwich with the purpose of investigation of the graphene / polymer interface. At small strains, significant mechanical reinforcement was observed for both graphene-reinforced rubbery and glassy PEMA layers. The interfacial mechanics between graphene and polymer layers was investigated and a “yield-like” interfacial slip was observed in the mechanical response of the nano-sandwich structures.
Identifer | oai:union.ndltd.org:theses.fr/2015ENAM0001 |
Date | 15 January 2015 |
Creators | Li, Xiguang |
Contributors | Paris, ENSAM, Texas Tech university, Régnier, Gilles |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds