Return to search

Forecasting Daily Supermarkets Sales with Machine Learning / Dagliga Försäljningsprognoser för Livsmedel med Maskininlärning

Improved sales forecasts for individual products in retail stores can have a positive effect both environmentally and economically. Historically these forecasts have been done through a combination of statistical measurements and experience. However, with the increased computational power available in modern computers, there has been an interest in applying machine learning for this problem. The aim of this thesis was to utilize two years of sales data, yearly calendar events, and weather data to investigate which machine learning method could forecast sales the best. The investigated methods were XGBoost, ARIMAX, LSTM, and Facebook Prophet. Overall the XGBoost and LSTM models performed the best and had a lower mean absolute value and symmetric mean percentage absolute error compared to the other models. However, Facebook Prophet performed the best in regards to root mean squared error and mean absolute error during the holiday season, indicating that Facebook Prophet was the best model for the holidays. The LSTM model could however quickly adapt during the holiday season improved the performance. Furthermore, the inclusion of weather did not improve the models significantly, and in some cases, the results were worsened. Thus, the results are inconclusive but indicate that the best model is dependent on the time period and goal of the forecast. / Förbättrade försäljningsprognoser för individuella produkter inom detaljhandeln kan leda till både en miljömässig och ekonomisk förbättring. Historiskt sett har dessa utförts genom en kombination av statistiska metoder och erfarenhet. Med den ökade beräkningskraften hos dagens datorer har intresset för att applicera maskininlärning på dessa problem ökat. Målet med detta examensarbete är därför att undersöka vilken maskininlärningsmetod som kunde prognostisera försäljning bäst. De undersökta metoderna var XGBoost, ARIMAX, LSTM och Facebook Prophet. Generellt presterade XGBoost och LSTM modellerna bäst då dem hade ett lägre mean absolute value och symmetric mean percentage absolute error jämfört med de andra modellerna. Dock, gällande root mean squared error hade Facebook Prophet bättre resultat under högtider, vilket indikerade att Facebook Prophet var den bäst lämpade modellen för att förutspå försäljningen under högtider. Dock, kunde LSTM modellen snabbt anpassa sig och förbättrade estimeringarna. Inkluderingen av väderdata i modellerna resulterade inte i några markanta förbättringar och gav i vissa fall även försämringar. Övergripande, var resultaten tvetydiga men indikerar att den bästa modellen är beroende av prognosens tidsperiod och mål.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-276483
Date January 2020
CreatorsFredén, Daniel, Larsson, Hampus
PublisherKTH, Optimeringslära och systemteori
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-SCI-GRU ; 2020:218

Page generated in 0.0022 seconds