Spelling suggestions: "subject:"facebook prophet"" "subject:"facebook prophete""
1 |
Forecasting Daily Supermarkets Sales with Machine Learning / Dagliga Försäljningsprognoser för Livsmedel med MaskininlärningFredén, Daniel, Larsson, Hampus January 2020 (has links)
Improved sales forecasts for individual products in retail stores can have a positive effect both environmentally and economically. Historically these forecasts have been done through a combination of statistical measurements and experience. However, with the increased computational power available in modern computers, there has been an interest in applying machine learning for this problem. The aim of this thesis was to utilize two years of sales data, yearly calendar events, and weather data to investigate which machine learning method could forecast sales the best. The investigated methods were XGBoost, ARIMAX, LSTM, and Facebook Prophet. Overall the XGBoost and LSTM models performed the best and had a lower mean absolute value and symmetric mean percentage absolute error compared to the other models. However, Facebook Prophet performed the best in regards to root mean squared error and mean absolute error during the holiday season, indicating that Facebook Prophet was the best model for the holidays. The LSTM model could however quickly adapt during the holiday season improved the performance. Furthermore, the inclusion of weather did not improve the models significantly, and in some cases, the results were worsened. Thus, the results are inconclusive but indicate that the best model is dependent on the time period and goal of the forecast. / Förbättrade försäljningsprognoser för individuella produkter inom detaljhandeln kan leda till både en miljömässig och ekonomisk förbättring. Historiskt sett har dessa utförts genom en kombination av statistiska metoder och erfarenhet. Med den ökade beräkningskraften hos dagens datorer har intresset för att applicera maskininlärning på dessa problem ökat. Målet med detta examensarbete är därför att undersöka vilken maskininlärningsmetod som kunde prognostisera försäljning bäst. De undersökta metoderna var XGBoost, ARIMAX, LSTM och Facebook Prophet. Generellt presterade XGBoost och LSTM modellerna bäst då dem hade ett lägre mean absolute value och symmetric mean percentage absolute error jämfört med de andra modellerna. Dock, gällande root mean squared error hade Facebook Prophet bättre resultat under högtider, vilket indikerade att Facebook Prophet var den bäst lämpade modellen för att förutspå försäljningen under högtider. Dock, kunde LSTM modellen snabbt anpassa sig och förbättrade estimeringarna. Inkluderingen av väderdata i modellerna resulterade inte i några markanta förbättringar och gav i vissa fall även försämringar. Övergripande, var resultaten tvetydiga men indikerar att den bästa modellen är beroende av prognosens tidsperiod och mål.
|
2 |
High Frequency Demand Forecasting : The Case of a Swedish Pharmacy Retailer / Högfrekvent Prognostisering av Efterfrågan : Fallstudie av en Svensk ApotekskedjaSaleem, Aban January 2022 (has links)
Predicting future sales can bring many advantages to retailers with regards to organizational performance. Using big data to make accurate forecasts can enable retailer to improve their operational performance and profitability substantially by reducing lost sales, inventory levels and labor costs. Previous research within the field of retail forecasting has mostly been dedicated to forecasting on lower time granularities such as weekly and monthly. However, despite the high practicality for retailers, forecasts on higher frequencies have not been properly covered by the current literature. This study aims to investigate how to forecast future sales using high-frequency data for a Swedish pharmacy retail chain. The forecasts are made on a daily and sub-daily time granularity using time series models SARIMA, Holt-Winter’s method and Facebook Prophet. The results show that Facebook Prophet was the most practical model and had the highest forecasting accuracy both on a daily and sub-daily frequency according to the error metrics MAPE, MAE and RMSE. / Att förutsäga framtida försäljning kan medföra många fördelar för detaljis-ter när det gäller organisationens prestanda. Att använda big data för att göra korrekta prognoser kan göra det möjligt för återförsäljare att förbättra sin lönsamhet avsevärt genom att minska förlorad försäljning, lagernivåer och arbetskostnader. Tidigare forskning inom området prognoser inom de-taljhandeln har mestadels ägnat sig åt prognoser på lägre tidsgranulariteter såsom veckovis och månadsvis. Trots att prognoser är mycket praktiska för detaljister så har prognoser på högre frekvenser inte täckts ordentligt av den aktuella litteraturen. Denna masteruppsats syftar till att undersöka hur man kan prognostisera framtida försäljning med hjälp av högfrekvent data för en svensk apotekskedja .Prognoserna görs på en daglig och sub-daglig tidsgranularitet medt idsseriemodellerna SARIMA, Holt-Winters metod och Facebook Prophet. Resultaten visar att Facebook Prophet var den mest praktiska tidsseriemodellen och hade den högsta träffsäkerheten både på en daglig och sub-daglig frekvens enligt felmåtten MAPE, MAE och RMSE.
|
Page generated in 0.0444 seconds