En esta memoria se describe el crecimiento, mediante pulverización catódica rf, de capas delgadas de NiFe2O4 y CoCr2O4 sobre distintos substratos y la subsiguiente caracterización magnética y eléctrica. El objetivo es integrar dichas capas en dispositivos magnetoelectrónicos tales como uniones túnel o filtros de spin.Hemos descubierto que el crecimiento epitaxial permite estabilizar fases nuevas del óxido NiFe2O4, fases que no existen en la forma másiva, y que tienen propiedades remarcablemente distintas. Como por ejemplo: un aumento dramático de la magnetización o la posibilidad de modificar drásticamente sus propiedades de transporte, pudiéndose obtener capas aislantes -como es en forma cerámica- o conductivas. Se ha realizado un estudio sistemático de los efectos del espesor de la capa y de las condiciones de crecimiento sobre las propiedades de magnetotransporte y los mecanismos de crecimiento.Argumentamos que el aumento de la magnetización es debido a la estabilización de una fase NiFe2O4 espinela que es parcialmente inversa, en la que los iones Ni2+ están distribuidos entre las dos posiciones disponibles (tetraédrica y octaédrica) de la estructura. En la forma masiva del material los iones Ni solo se encuentran en los sitios octaédricos. La introducción adicional de vacantes de oxígeno es probablemente la causa de la existencia de una configuración electrónica mixta Fe2+/3+ en la subred octaédrica y de la alta conductividad de las capas.Hemos aprovechado la capacidad de obtener epitaxias de NiFe2O4 ferrimagnéticas conductoras o aislantes para integrarlas en dos distintos dispositivos magnetoelectrónicos: una unión túnel magnética y un filtro de spin.Las capas conductoras de NiFe2O4 se han empleado como electrodos ferrimagnéticos-metálicos en uniones túnel. El otro electrodo magnético es (La,Sr)MnO3 y la barrera túnel SrTiO3. Se ha podido medir una magnetoresistencia túnel importante hasta temperaturas tan altas como 280K. Los valores de magnetoresistencia corresponden a una polarización de spin del NiFe2O4 de aproximadamente un 40%, que es prácticamente independiente de la temperatura. Estos resultados sugieren que la nueva fase conductora que hemos estabilizado es un candidato interesante como fuente de corriente polarizada en spin. Por otra parte, el NiFe2O4 aislante se ha implementado, por primera vez, como barrera túnel en una heteroestructura de filtro de spin. El electrodo magnético es (La,Sr)MnO3 y el electrodo no magnético Au. Hemos observado una magnetoresistencia túnel que alcanza valores de hasta un 50%. A partir de estas medidas, hemos deducido detalles relevantes de la estructura electrónica de la fase parcialmente inversa de NiFe2O4.Hemos crecido el óxido CoCr2O4 sobre distintos substratos, tales como MgO(001) y MgAl2O4(001). Hemos podido comprobar que este óxido presenta una pronunciada tendencia a un crecimiento 3D. Por esta razón, las superficies de la capa no son nunca suficientemente planas y no se pueden usar en heteroestructuras túnel. Sin embargo hemos aprovechado esta característica para controlar el crecimiento de estas estructuras 3D y hemos conseguido la formación de objetos submicrónicos, autoorganizados con formas piramidales muy bien definidas. El estudio detallado del efecto de los parámetros de crecimiento nos ha permitido por una parte, dilucidar cuales son los mecanismos que llevan a una autoorganización tan perfecta y por otra determinar que, en las condiciones adecuadas, se pueden obtener templates totalmente faceteados con múltiples posibilidades para futuras aplicaciones. / In this thesis the growth of thin films of NiFe2O4 and CoCr2O4 by RF sputtering on different oxide substrates and the characterization of their magnetic and electric properties is reported. The aim is to integrate the films into spintronic devices namely magnetic tunnel junctions and spin filter.It was found that the epitaxial growth of these films permits to stabilize new phases of NiFe2O4, which are not found for the bulk material and which show remarkably distinct properties. A strong enhancement of the saturation magnetization was found as well as the possibility to tune the electric behaviour of the films from insulating - like in bulk NiFe2O4 - to conducting. A systematic study of the influence of the film thickness and growth parameters on the properties of the films was carried out.The enhancement of the saturation magnetization can be explained by a partially inversed spinel structure, where the Ni2+ ions are distributed over both available sites (octahedral and tetrahedral) of the structure, whereas in bulk NiFe2O4 the Ni2+ ions are only located on the octahedral sites of the structure. An additional introduction of oxygen vacancies causes the formation of mixed valence Fe2+/3+ chains on the octahedral sites and thus a hopping conductivity.We have taken advantage of our ability to obtain epitaxial ferromagnetic NiFe2O4 films of insulating or conducting character to integrate them in two different spintronic devices: the magnetic tunnel junction and the spin filter.The conducting NiFe2O4 was integrated in a magnetic tunnel junction as a magnetic electrode, with a (La,Sr)MnO3 counterelectrode and a SrTiO3 barrier. A magnetoresistance was measured up to a temperature of 280K. The values of the magnetoresistance correspond to a spin-polarization of 40%, which is basically constant in temperature. This results show that the conductive phase of NiFe2O4 is an interesting candidate for the application as a source of highly spin-polarized current.On the other hand the insulating NiFe2O4 has been integrated into a spin filter as the magnetic barrier. The magnetic electrode was again (La,Sr)MnO3 and the counter electrode Au. A magnetoresistance up to 50% was observed. It was possible to deduce the band structure of NiFe2O4 from these measurements.Thin films of CoCr2O4 were grown on different substrates like MgO(001) or MgAl2O4(001). It was found that the material shows a pronounced tendency to grow in a three dimensional manner. Thus the surface of these films is not sufficiently smooth to integrate them into tunnel contacts.However, we were able to control the growth and morphology of the three dimensional structures leading to the formation of submicron self-organized pyramids with a square or elongated base. By a detailed study of the influence of the growth parameters it was possible to elucidate the underlying growth mechanisms and to obtain a fully faceted surface, which can be used in different applications.
Identifer | oai:union.ndltd.org:TDX_UAB/oai:www.tdx.cat:10803/3373 |
Date | 20 May 2005 |
Creators | Lüders, Ulrike Anne |
Contributors | Bobo, Jean-François, Fontcuberta i Griñó, Josep, Universitat Autònoma de Barcelona. Departament de Física |
Publisher | Universitat Autònoma de Barcelona |
Source Sets | Universitat Autònoma de Barcelona |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis, info:eu-repo/semantics/publishedVersion |
Format | application/pdf |
Source | TDX (Tesis Doctorals en Xarxa) |
Rights | ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs., info:eu-repo/semantics/openAccess |
Page generated in 0.0019 seconds