Ces travaux de thèse portent sur la conception et sur la caractérisation expérimentale de résonateurs opto-phononiques. Ces structures permettent le confinement simultané de modes optiques et de vibrations mécaniques de très haute fréquence (plusieurs dizaines jusqu’à plusieurs centaines de GHz). Cette étude a été effectuée sur des systèmes multicouches à l’échelle nanométrique, fabriqués à partir de matériaux semiconducteurs de type III-V. Ces derniers ont été caractérisés par des mesures de spectroscopie Raman de haute résolution. Grâce aux méthodes expérimentales et aux outils numériques développés, nous avons pu explorer de nouvelles stratégies de confinement pour des phonons acoustiques au sein de super-réseaux nanophononiques, à des fréquences de résonance de l’ordre de 350 GHz. En particulier, nous avons étudié les propriétés acoustiques de deux types de résonateurs planaires. Le premier est basé sur la modification adiabatique du diagramme de bande d’un cristal phononique unidimensionnel. Dans le deuxième système, nous utilisons les invariants topologiques caractérisant ces structures périodiques, afin de créer un état d’interface entre deux miroirs de Bragg phononiques. Nous nous sommes ensuite intéressés à l’étude de cavités opto-phononiques permettant le confinement tridimensionnel de la lumière et de vibrations mécaniques de haute fréquence. Nous avons mesuré par spectroscopie Raman les propriétés acoustiques de résonateurs phononiques planaires placés à l’intérieur de cavités optiques tridimensionnelles, de type micropiliers. Enfin, la dernière partie de cette thèse porte sur l’étude théorique des propriétés optomécaniques de micropiliers GaAs/AlAs. Nous avons effectué des simulations numériques par éléments finis, nous permettant d’expliquer les mécanismes de confinement tridimensionnel de modes acoustiques et optiques dans ces systèmes, et de calculer les principaux paramètres optomécaniques. Les résultats de cette étude démontrent que les micropilier GaAs/AlAs possèdent des caractéristiques prometteuses pour de futures expériences en optomécanique, telles que des fréquences de résonance acoustiques très élevées, de hauts facteurs de qualités mécaniques et optiques à température ambiante, ou encore de fortes valeurs pour les facteurs de couplage optomécaniques et pour le produit Q • f / The work carried out in this thesis addresses the conception and the experimental characterization of opto-phononic resonators. These structures enable the confinement of optical modes and mechanical vibrations at very high frequencies (from few tens up to few hundreds of GHz). This study has been carried out on multilayered nanometric systems, fabricated from III-V semiconductor materials. These nanophononic platforms have been characterized through high resolution Raman scattering measurements. The experimental methods and the numerical tools that we have developed in this thesis have allowed us to explore novel confinement strategies for acoustic phonons in acoustic superlattices, with resonance frequencies around 350 GHz. In particular, we have studied the acoustic properties of two nanophononic resonators. The first acoustic cavity proposed in this manuscript enables the confinement of mechanical vibrations by adiabatically changing the acoustic band-diagram of a one-dimensional phononic crystal. In the second system, we take advantage of the topological invariants characterizing one dimensional periodic structures, in order to create an interface state between two phononic distributed Bragg reflectors. We have then focused on the study of opto-phononic cavities allowing the simultaneous confinement of light and of high frequency mechanical vibrations. We have measured, by Raman scattering spectroscopy, the acoustic properties of planar nanophononic structures embedded in three-dimensional micropillar optical resonators. Finally, in the last sections of this manuscript, we investigate the optomechanical properties of GaAs/AlAs micropillar cavities. We have performed numerical simulations through the finite element method that allowed us to explain the three-dimensional confinement mechanisms of optical and mechanical modes in these systems, and to calculate the main optomechanical parameters. This work shows that GaAs/AlAs micropillars present very interesting properties for future optomechanical experiments, such as very high mechanical resonance frequencies, large optical and mechanical quality factors at room temperature, and high values for the vacuum optomechanical coupling factors and for the Q • f products
Identifer | oai:union.ndltd.org:theses.fr/2018USPCC103 |
Date | 12 July 2018 |
Creators | Lamberti, Fabrice-Roland |
Contributors | Sorbonne Paris Cité, Voisin, Paul |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image |
Page generated in 0.0018 seconds