• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 2
  • 1
  • Tagged with
  • 11
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dengue NS1 Detection using Chemically Modified Silicon Micropillars

Singh,Minashree Unknown Date
No description available.
2

SYNTHESIS AND FUNCTIONALITY STUDY OF NOVEL BIOMIMETIC N-GLYCAN POLYMERS

Chan, Ka Keung 10 June 2021 (has links)
No description available.
3

Characterization of Poly(dimethylsiloxane) Blends and Fabrication of Soft Micropillar Arrays for Force Detection

Petet, Thomas J, Jr 01 January 2016 (has links)
Diseases involving fibrosis cause tens of thousands of deaths per year in the US alone. These diseases are characterized by a large amount of extracellular matrix, causing stiff abnormal tissues that may not function correctly. To take steps towards curing these diseases, a fundamental understanding of how cells interact with their substrate and how mechanical forces alter signaling pathways is vital. Studying the mechanobiology of cells and the interaction between a cell and its extracellular matrix can help explain the mechanisms behind stem cell differentiation, cell migration, and metastasis. Due to the correlation between force, extracellular matrix assembly, and substrate stiffness, it is vital to make in vitro models that more accurately simulate biological stiffness as well as measure the amount of force and extracellular matrix assembly. To accomplish this, blends of two types of poly(dimethylsiloxane) (PDMS) were made and the material properties of these polymer blends were characterized. A field of 5µm or 7µm microscopic pillars (referred to as posts) with a diameter of 2.2µm were fabricated from these blends. Each combination of PDMS blend and post height were calibrated and the stiffness was recorded. Additionally, polymer attachment experiments were run to ensure cells survived and had a normal phenotype on the different blends of PDMS when compared to pure PDMS. Finally, cells were placed onto a field of posts and their forces were calculated using the new stiffness found for each blend of post. Varying the PDMS material stiffness using blends allow posts to be much more physiologically relevant and help to create more accurate in vitro models while still allowing easy and accurate force measurement. More biologically relevant in vitro models can help us acquire more accurate results when testing new drugs or examining new signaling pathways.
4

Opto-phononic confinement in GaAs/AlAs-based resonators / Confinement opto-phononique au sein de résonateurs GaAs/AlAs

Lamberti, Fabrice-Roland 12 July 2018 (has links)
Ces travaux de thèse portent sur la conception et sur la caractérisation expérimentale de résonateurs opto-phononiques. Ces structures permettent le confinement simultané de modes optiques et de vibrations mécaniques de très haute fréquence (plusieurs dizaines jusqu’à plusieurs centaines de GHz). Cette étude a été effectuée sur des systèmes multicouches à l’échelle nanométrique, fabriqués à partir de matériaux semiconducteurs de type III-V. Ces derniers ont été caractérisés par des mesures de spectroscopie Raman de haute résolution. Grâce aux méthodes expérimentales et aux outils numériques développés, nous avons pu explorer de nouvelles stratégies de confinement pour des phonons acoustiques au sein de super-réseaux nanophononiques, à des fréquences de résonance de l’ordre de 350 GHz. En particulier, nous avons étudié les propriétés acoustiques de deux types de résonateurs planaires. Le premier est basé sur la modification adiabatique du diagramme de bande d’un cristal phononique unidimensionnel. Dans le deuxième système, nous utilisons les invariants topologiques caractérisant ces structures périodiques, afin de créer un état d’interface entre deux miroirs de Bragg phononiques. Nous nous sommes ensuite intéressés à l’étude de cavités opto-phononiques permettant le confinement tridimensionnel de la lumière et de vibrations mécaniques de haute fréquence. Nous avons mesuré par spectroscopie Raman les propriétés acoustiques de résonateurs phononiques planaires placés à l’intérieur de cavités optiques tridimensionnelles, de type micropiliers. Enfin, la dernière partie de cette thèse porte sur l’étude théorique des propriétés optomécaniques de micropiliers GaAs/AlAs. Nous avons effectué des simulations numériques par éléments finis, nous permettant d’expliquer les mécanismes de confinement tridimensionnel de modes acoustiques et optiques dans ces systèmes, et de calculer les principaux paramètres optomécaniques. Les résultats de cette étude démontrent que les micropilier GaAs/AlAs possèdent des caractéristiques prometteuses pour de futures expériences en optomécanique, telles que des fréquences de résonance acoustiques très élevées, de hauts facteurs de qualités mécaniques et optiques à température ambiante, ou encore de fortes valeurs pour les facteurs de couplage optomécaniques et pour le produit Q • f / The work carried out in this thesis addresses the conception and the experimental characterization of opto-phononic resonators. These structures enable the confinement of optical modes and mechanical vibrations at very high frequencies (from few tens up to few hundreds of GHz). This study has been carried out on multilayered nanometric systems, fabricated from III-V semiconductor materials. These nanophononic platforms have been characterized through high resolution Raman scattering measurements. The experimental methods and the numerical tools that we have developed in this thesis have allowed us to explore novel confinement strategies for acoustic phonons in acoustic superlattices, with resonance frequencies around 350 GHz. In particular, we have studied the acoustic properties of two nanophononic resonators. The first acoustic cavity proposed in this manuscript enables the confinement of mechanical vibrations by adiabatically changing the acoustic band-diagram of a one-dimensional phononic crystal. In the second system, we take advantage of the topological invariants characterizing one dimensional periodic structures, in order to create an interface state between two phononic distributed Bragg reflectors. We have then focused on the study of opto-phononic cavities allowing the simultaneous confinement of light and of high frequency mechanical vibrations. We have measured, by Raman scattering spectroscopy, the acoustic properties of planar nanophononic structures embedded in three-dimensional micropillar optical resonators. Finally, in the last sections of this manuscript, we investigate the optomechanical properties of GaAs/AlAs micropillar cavities. We have performed numerical simulations through the finite element method that allowed us to explain the three-dimensional confinement mechanisms of optical and mechanical modes in these systems, and to calculate the main optomechanical parameters. This work shows that GaAs/AlAs micropillars present very interesting properties for future optomechanical experiments, such as very high mechanical resonance frequencies, large optical and mechanical quality factors at room temperature, and high values for the vacuum optomechanical coupling factors and for the Q • f products
5

Fabrication, integration and study of micropillars for cell culture / Fabrication, intégration et étude de micropiliers pour la culture cellulaire

Wei, Jin 15 September 2017 (has links)
Ce travail a pour but de développer des nouveaux substrats d’étude en culture cellulaire. Nous avons d'abord fabriqué des réseaux de micro-piliers en élastomère et en polymères thermoplastiques. En particulier, nous avons réalisé des réseaux de micro-piliers adjacents et de différentes hauteurs, qui dépend de la rigidité de la surface de culture. Nos résultats ont montré que les cellules étaient sensibles à la hauteur des piliers lorsque la rigidité effective du substrat était similaire à celle de la cellule et que les cellules se déplacent préférentiellement vers la partie plus rigide. Nous avons également développé une méthode pour fabriquer des nanofibres sur les piliers élastomère pour créer un substrat qui reproduit la matrice extracellulaire in vivo. Nos résultats ont montré que les neurones primaires de l'hippocampe sur un tel substrat étaient plus actifs que sur des substrats plats. En outre, nous avons analysé le confinement et la déformation des noyaux cellulaires dans les espaces inter-piliers pour les études de cellules tumorales et de cellules souches. Enfin, nous avons intégré les réseaux de micro-piliers dans un dispositif microfluidique afin de montrer que la migration cellulaire soumise à un gradient de concentration était influencée par la rigidité du substrat. En conclusion, les micropiliers ainsi fabriqués peuvent être utilisés pour réguler la rigidité d’un substrat afin d’étudier divers mécanismes en culture cellulaire. / This work aimed to provide new substrates for cell culture studies. We first developed a method to fabricate micropillars in both elastomer and thermoplastic polymer. In particular, we produced adjacent micropillar arrays with different heights to evaluate the surface stiffness dependent migration of cells. Our results showed that cells were sensitive to the height of the pillars when the effective stiffness of the substrate is compatible to that of the cell and that the cells were preferentially localized on the stiffer surface area. We also developed a method to fabricate nanofibers on the elastomer pillars to create in-vivo like extracellular matrix. Our results showed that primary hippocampal neurons on such a substrate were more active than on flat substrates. Furthermore, we analyzed the confinement and deformation of cell nuclei in the inter-pillar areas for both cancer and stem cell studies. Finally, we integrated the micro-pillar arrays into a microfluidic device and showed that the cell migration under concentration gradient was influenced by the substrate stiffness. Altogether, the fabricated pillar arrays can be used to regulate the stiffness of the substrate for cell culture studies.
6

Réalisation et étude de substrates de rigidité modulable et de dispositifs intégrables pour l'ingénierie cellulaire et tissulaire / Realization and study of substrates with modular rigidity and integratable devices for cellular and tissue engineering

Wang, Bin 26 September 2017 (has links)
L’objectif de ce travail de thèse est de réaliser des substrats et des dispositifs de culture cellulaire pour des applications à grande échelle. En utilisant à la fois des techniques de lithographie conventionnelles et non conventionnelles, nous avons d'abord fabriqué des matrices denses de piliers élastomère avec un gradient de hauteur pour les études de migration cellulaire et nous avons observé un allongement cellulaire remarquable et une migration cellulaire dirigée, tout dépendant du gradient de rigidité. Les micropiliers élastomères pourraient également être organisés en gradient de hauteur oscillant, montrant des comportements cellulaire similaires. Sur la base d'une approche biomimétique, nous avons produit des nanofibres à deux côtés d'une membrane avec des trous traversants pour l’adhésion et la migration tridimensionnelles de cellules. Nos résultats ont montré qu'un tel substrat peut favoriser l'infiltration et la prolifération des cellules dans un environnement 3D. Enfin, nous avons utilisé des réseaux micropiliers de différentes hauteurs en tant que substrat de rigidité contrôlée pour la différenciation des cardiomyocytes à partir de cellules souches pluripotentes l'homme. À l'aide d'un stencil en élastomère, des embryons uniformes pourraient être obtenus et dérivés vers les cellules de ciblage sur le substrat de différentes rigidité, montrant clairement une dépendance de rigidité des substrats. / The purpose of this work is to develop manufacturable cell culture substrates and devices for large scale applications. By using both conventional and non-conventional lithography techniques, we firstly fabricated dense elastomer pillar arrays with height gradient for cell migration studies and we observed remarkable cell elongation and directed cell migration, all depending on the strength of the stiffness gradient. Elastomer micropillars could also be organized in ripple-like height gradient patterns, showing similar cell behaviors. Based on a biomimetic approach, we produced nanofibers on both side of a membrane with through holes for three-dimensional cell adhesion and migration. Our results showed that such a 3D scaffold can promote the cell infiltration and proliferation. Finally, we used micropillar arrays of different height as stiffness controlled substrate for cardiomyocytes differentiation from human induced pluripotent stem cells (hiPSCs). With the help of an elastomer stencil, uniform embryoids could be obtained and derived to the targeting cells on the substrate of different stiffness, showing a clear stiffness dependence of the substrates.
7

Turbulent flow control via nature inspired surface modifications

Beneitez, Miguel, Sundin, Johan January 2017 (has links)
Many of the flows in nature are turbulent. To modify turbulent flows, nature serves itself with different types of coatings. Sharks have riblets-like structures on their skin, fishes have slime with polymers and the surface of the lotus flower has superhydrophobic properties. However many times these naturally occurring coatings also serve other purposes. Due to millions of years of adaption, there are anyway many reasons to be inspired by these. The present work is an investigation of nature inspired coatings with the aim of passive flow manipulations. The goal of the investigation has not been to achieve drag reduction, but to achieve a better understanding of the effect of these coatings on turbulent flows. Simulations have been performed in a channel flow configuration, where the boundary condition on one wall has been modified. A macroscopic description has been used to simulate superhydrophobic and porous-like surfaces and a microscopic description has been used to simulate suspended fibers, both rigid and flexible, attached to the channel wall. For the macroscopic description, a pseudo-spectral method was used and for the microscopic description a lattice-Boltzmann method was used. The superhydrophobic modification was implemented using a general slip tensor formulation. In agreement with earlier results, drag reduction was achieved with slip in the streamwise direction and slip in the spanwise direction resulted in drag increase. Non-zero off-diagonal terms in the slip tensor resulted in a slight drag increase, but with rather similar flow behaviour. Transpiration, imitating a porous media, gave rise to drag increase and severely modified the turbulent structures, forming two-dimensional structures elongated in the spanwise direction. For the short fibers, neither rigid nor flexible fibers modified the velocity field to a large extent. The fibers gave rise to recirculation regions and these were seen to be stronger below high-speed streaks. Flexible fibers showed similarities to porous media through a coupling of wallnormal velocity and pressure fluctuations, and this was not seen for the rigid fibers. The fiber deflections were seen to correlate well with the pressure fluctuations. / Många naturligt förekommande flöden är turbulenta. Naturen har också gett upphov till flera typer av ytskikt som kan påverka dessa. Hajars skinn har räfflor, fiskar har slem som innehåller polymerer och lotusblommans yta har superhydrofobiska egenskaper, men ofta har dessa naturliga ytskikt också andra egenskaper. På grund av miljoner år av anpassning så finns det ändå många skäl att studera dessa. Detta arbete är en studie av naturinspirerade ytskikt, där målet har varit passiva flödesmanipulationer. Målet har inte varit att åstadkomma en ytfriktionsminskning, utan att få en bättre förståelse om hur dessa ytskikt påverkar turbulenta flöden. Simuleringar har utförts i en kanalliknande geometri, där en kanalväggs randvillkor har modifierats. En makroskopisk beskrivning har använts för att simulera superhydrofobiska och porösa ytor och en mikroskopisk beskriving har använts för att simulera fibrer, både stela och böjbara, fastsatta på en kanalvägg. För flödet med det makroskopiskt beskrivna randvillkoret har en pseudospektral metod använts och för flödet med det mikroskopiskt beskrivna randvillkoret har en lattice-Boltzmannmetod använts. Den superhydrofobiska ytan implementerades genom en generell tensorformulering. Ett randvillkor med nollskild hastighet i kanalens riktning gav upphov till en ytfriktionsminskning och ett randvillkor med nollskild hastighet vinkelrät mot kanalens riktning gav upphov till en ökad ytfriktion, i överensstämmelse med tidigare resultat. Nollskilda icke-diagonala tensorelement gav upphov till en smärre ökning av ytfriktionen, utan att nämnvärt förändra flödet. De porösa ytorna gav upphov till en ytfriktionsökning och hade stor inverkan på de turbulenta strukturerna. Dessa ytor bildade tvådimensionella struturer vinkelrät mot kanalens riktning. Varken de stela eller de böjbara fibrerna gav upphov till stora ändringar i hastighetsfältet. Däremot uppstor cirkulationszoner och dessa var starkare under stråkstrukturer med hög hastighet. De böjbara fibrerna uppvisade likheter med porösa material genom en interaktion mellan det vertikala hastighetsfältet och de turbulenta tryckfluktuationerna. Denna interaktion uppstod inte för de stela fibrerna. Fibrernas böjning korrelerade också i stor utsträckning till tryckfluktuationerna.
8

Mécano-biologie de cellules cancéreuses sur surfaces à topographie et chimie contrôlées / Mecanobiology of cancerous cells on topographically and chemically well controlled surfaces

Badique, Florent 16 December 2013 (has links)
Le travail présenté dans cette thèse est le résultat d'une collaboration fructueuse entre la chimie, la physique et la biologie. En effet, des matériaux avec des propriétés physico-chimiques très contrôlées ont été mis à profit dans le but de caractériser des fonctions cellulaires complexes. Nous présentons tout d'abord la création d'un outil permettant l'étude de la mécanotransduction cellulaire. L'originalité de cet outil est basé sur son activation par étirement permettant de lier réversiblement les cellules à la surface. Nous avons ensuite étudié des comportements de cellules souches et cancéreuses en réponse à des microtopographies sous forme de piliers. Cette approche a permis de définir un comportement cancéreux caractérisé par une déformation prononcée des corps et noyaux cellulaires. Nous montrons aussi que l'utilisation de cette surface couverte de micro-piliers permet de décrire la mécano-biologie de cellules cancéreuses. En effet, ce substrat à topographie contrôlée a permis de montrer que la chimie et la rigidité du substrat n'ont que peu d'incidence sur la déformation des cellules cancéreuses, alors que les éléments du cytosquelette sont primordiaux et que sans eux, la déformation n'est pas possible. Nous avons ensuite inhibé une à une des protéines de l'enveloppe et de la lamina nucléaire afin d'évaluer leur implication dans ces mécanismes de déformation. En parallèle, un séquençage total des ARN (Acides RiboNucléiques) de cellules déformées et non déformées a été réalisé dans le but de visualiser d'éventuelles modifications dans l'expression génique. Ces déformations des cellules cancéreuses entre les micro-piliers ont été comparées à celles que subissent les cellules lors de la traversée de membranes poreuses (Chambres de Boyden). Ces comparaisons nous ont permis d'identifier que plusieurs mécanismes peuvent aboutir à la déformation de cellules cancéreuses et en particulier de leurs noyaux. Nous montrons dans une dernière partie que la mitose cellulaire s'effectue sur les surfaces microstructurées. Nous décrivons une ségrégation des chromosomes qui semble être non parallèle. Toutefois, ces divisions atypiques ne causent pas davantage d'accidents mitotiques. / The work shown in this thesis is the outcome of a successful collaboration between chemistry, physics and biology. Indeed, materials with well controlled parameters have been used in order to characterize complex cellular functions. We first introduce the creation of one tool which allow the study of cells mechanotransduction. The originality of this tool is based on its activation by stretching which allow a reversible adhesion of cells to the surface.Then, we studied the behavior of stem cells and cancerous cells on micropillared surfaces. This approach allowed us to describe a cancerous behavior of cells characterized by strong deformations of cells bodies and nuclei. We also showed that the use of such micropillared surfaces allowed us to describe cancerous cells mecanobiology. Indeed, this substrate with a well controlled topography allowed us to show that substrates chemistry and stiffness have only little effects on cancerous cells deformation while cytoskeleton components are necessary. More specifically, the deformation is impossible without the cytoskeleton. We also inhibited the nuclear envelope proteins and nuclear lamina proteins in order to evaluate their involvement in cells deformation mechanism. In the same time, a total RNA (RiboNucleic Acids) sequencing of deformed and non deformed cells have been done in order to identify an eventual modification in gene expression.These deformations of cancerous cells between micropillars have been compared to the deformation of cells during the transmigration through porous membranes (Boyden chambers). These comparisons allowed us to identify several mechanisms which lead to cells deformation and more specifically to nuclei deformation.We showed in a last part that cells can divide on micropillared surfaces. We described a non parallel like segregation of chromosomes. However, these unusual mitosis didn't lead to supernumerary troubles in cell division.
9

Size Effects in Ferromagnetic Shape Memory Alloys

Ozdemir, Nevin 2012 May 1900 (has links)
The utilization of ferromagnetic shape memory alloys (FSMAs) in small scale devices has attracted considerable attention within the last decade. However, the lack of sufficient studies on their reversible shape change mechanisms, i.e, superelasticity, magnetic field-induced martensite variant reorientation and martensitic phase transformation, at the micron and submicron length scales prevent the further development and the use of FSMAs in small scale devices. Therefore, investigating the size effects in these mechanisms has both scientific and technological relevance. Superelastic behavior of Ni54Fe19Ga27 shape memory alloy single crystalline pillars was studied under compression as a function of pillar diameter. Multiple pillars with diameters ranging between 200 nm and 10 µm were cut on a single crystalline bulk sample oriented along the [110] direction in the compression axis and with fully reversible two-stage martensitic transformation. The results revealed size dependent two-stage martensitic transformation which was suppressed for pillar sizes of 1 µm and below. We also demonstrated that the reduction in pillar diameter decreases the transformation temperature due to the difficulty of martensite nucleation in small scales. Size effects in the magnetic field-induced martensite variant reorientation were investigated in the Ni50Mn28.3Ga21.7 single crystals oriented along the [100] direction of the austenite phase. Single crystalline compression pillars were fabricated on the martensite twins between the sizes of 630 nm and 20 µm. It was found that the stress-induced and magnetic field-induced martensite variant reorientation are size dependent and became more difficult with the reduction in sample size. Surprisingly, it was still possible to magnetically activate the shape change in the micropillars which indicates the fact that magnetocrystalline anisotropy energy increases with the reduction in sample dimensions. Ni45Mn36.6Co5In13.4 pillars between the 600 nm and 10 µm diameters were investigated along the [100] direction of the austenite to study the size effects in the magnetic field-induced phase transformation (MFIPT). MFIPT was obtained down to 5 µm size in these pillars with reasonable magnetic field levels similar to their bulk counterparts.
10

Effets des interfaces cristallines sur les champs mécaniques en plasticité cristalline et conséquences sur le glissement dans des micro-piliers bi-cristallins / Effects of interfaces on the mechanical fields in crystal plasticity and consequences on slip in bicrystalline micropillars

Tiba, Idriss 14 October 2015 (has links)
Dans le but de parvenir à comprendre le rôle des joints de grains sur la déformation des polycristaux, il est nécessaire d’étudier finement le comportement des bi-cristaux. Dans cette étude, une approche expérimentale innovante basée sur la fabrication et l’étude du comportement mécanique et de la plasticité cristalline de micro-piliers bi-cristallins est combinée à une approche de modélisation micromécanique. Cette approche théorique est basée sur la théorie continue des dislocations dans laquelle les dislocations stockées au joint de grains sont décrites par une distribution continue de dislocations interfaciales. Ce modèle fournit des expressions analytiques explicites des champs de contraintes et de rotations du réseau dans le cas d’un bi-cristal infini avec un joint plan. Les contributions des différentes sources d’incompatibilité sont mises en évidence en raison des anisotropies élastique et plastique liées aux différentes orientations cristallines. Des calculs éléments finis ont permis de valider l’approche dans une zone proche du joint de grains et distante des surfaces libres du micro-pilier. L’analyse expérimentale est basée sur des essais de compression menés à température ambiante sur des micro-piliers bi-cristallins de Ni fabriqués au FIB (Focused Ion Beam). D’abord, l’étude s’est concentrée sur les prédictions des cissions résolues sur tous les systèmes de glissement du bi-cristal en utilisant le modèle continu. Les effets des fractions volumiques de cristaux et de l’inclinaison du joint de grains ont également été pris en compte dans l’analyse. Les prédictions du modèle développé dans cette thèse sont en accord avec les systèmes de glissement actifs identifiés. Concernant l’entrée en plasticité et les systèmes de glissement associés dans chaque cristal, le modèle développé est plus pertinent que la loi de Schmid. Les essais de compression sont suivis par des mesures microstructurales effectuées par EBSD, pour quantifier les rotations du réseau dans chaque grain au cours de la déformation. Celles-ci ont été également calculées et discutées à l’aide du modèle micromécanique développé dans cette thèse / In order to better understand the role of grain boundaries in polycrystals deformation, the study of the mechanical behavior of bicrystals becomes necessary. In this study, an innovative experimental approach based on the fabrication of bicrystalline micropillars is investigated with a micromechanical analysis of crystal plasticity behavior. The theoretical approach is based on the static Field Dislocation Mechanics (FDM) theory in which the dislocations stored in the grain boundary are described by a continuous distribution of interfacial dislocations. This model provides explicit analytical expressions of the stress and lattice rotation fields in the case of an infinite bicrystal with planar boundary. The contribution of the different incompatibility sources are emphasized due to elastic and plastic anisotropies related to the different crystal orientations. Finite element simulations were also performed to validate this approach in a zone close to the grain boundary and far from the micropillar free surfaces. The experimental results are based on compression tests conducted at room temperature on Ni bicrystalline micropillars. The micropillars are machined on a Focused Ion Beam (FIB). First, the study is focused on the prediction of the resolved shear stresses on the possible slip systems in the bicrystal using the continuum model. The crystal volume fraction and the grain boundary inclination angle effects were also taken into account in the analysis. The predictions of the continuum-based approach developed in this thesis are in full agreement with the experimentally identified active slip systems. Concerning the onset of plasticity and the associated slip systems in each crystal, the developed model is more relevant than the Schmid law. The compression tests are followed by microstructural EBSD measurements to quantify lattice rotations in each grain during the deformation which were also computed using the micromechanical model developed in the present thesis

Page generated in 0.0359 seconds