Spelling suggestions: "subject:"invariants topologique"" "subject:"nvariants topologique""
1 |
Opto-phononic confinement in GaAs/AlAs-based resonators / Confinement opto-phononique au sein de résonateurs GaAs/AlAsLamberti, Fabrice-Roland 12 July 2018 (has links)
Ces travaux de thèse portent sur la conception et sur la caractérisation expérimentale de résonateurs opto-phononiques. Ces structures permettent le confinement simultané de modes optiques et de vibrations mécaniques de très haute fréquence (plusieurs dizaines jusqu’à plusieurs centaines de GHz). Cette étude a été effectuée sur des systèmes multicouches à l’échelle nanométrique, fabriqués à partir de matériaux semiconducteurs de type III-V. Ces derniers ont été caractérisés par des mesures de spectroscopie Raman de haute résolution. Grâce aux méthodes expérimentales et aux outils numériques développés, nous avons pu explorer de nouvelles stratégies de confinement pour des phonons acoustiques au sein de super-réseaux nanophononiques, à des fréquences de résonance de l’ordre de 350 GHz. En particulier, nous avons étudié les propriétés acoustiques de deux types de résonateurs planaires. Le premier est basé sur la modification adiabatique du diagramme de bande d’un cristal phononique unidimensionnel. Dans le deuxième système, nous utilisons les invariants topologiques caractérisant ces structures périodiques, afin de créer un état d’interface entre deux miroirs de Bragg phononiques. Nous nous sommes ensuite intéressés à l’étude de cavités opto-phononiques permettant le confinement tridimensionnel de la lumière et de vibrations mécaniques de haute fréquence. Nous avons mesuré par spectroscopie Raman les propriétés acoustiques de résonateurs phononiques planaires placés à l’intérieur de cavités optiques tridimensionnelles, de type micropiliers. Enfin, la dernière partie de cette thèse porte sur l’étude théorique des propriétés optomécaniques de micropiliers GaAs/AlAs. Nous avons effectué des simulations numériques par éléments finis, nous permettant d’expliquer les mécanismes de confinement tridimensionnel de modes acoustiques et optiques dans ces systèmes, et de calculer les principaux paramètres optomécaniques. Les résultats de cette étude démontrent que les micropilier GaAs/AlAs possèdent des caractéristiques prometteuses pour de futures expériences en optomécanique, telles que des fréquences de résonance acoustiques très élevées, de hauts facteurs de qualités mécaniques et optiques à température ambiante, ou encore de fortes valeurs pour les facteurs de couplage optomécaniques et pour le produit Q • f / The work carried out in this thesis addresses the conception and the experimental characterization of opto-phononic resonators. These structures enable the confinement of optical modes and mechanical vibrations at very high frequencies (from few tens up to few hundreds of GHz). This study has been carried out on multilayered nanometric systems, fabricated from III-V semiconductor materials. These nanophononic platforms have been characterized through high resolution Raman scattering measurements. The experimental methods and the numerical tools that we have developed in this thesis have allowed us to explore novel confinement strategies for acoustic phonons in acoustic superlattices, with resonance frequencies around 350 GHz. In particular, we have studied the acoustic properties of two nanophononic resonators. The first acoustic cavity proposed in this manuscript enables the confinement of mechanical vibrations by adiabatically changing the acoustic band-diagram of a one-dimensional phononic crystal. In the second system, we take advantage of the topological invariants characterizing one dimensional periodic structures, in order to create an interface state between two phononic distributed Bragg reflectors. We have then focused on the study of opto-phononic cavities allowing the simultaneous confinement of light and of high frequency mechanical vibrations. We have measured, by Raman scattering spectroscopy, the acoustic properties of planar nanophononic structures embedded in three-dimensional micropillar optical resonators. Finally, in the last sections of this manuscript, we investigate the optomechanical properties of GaAs/AlAs micropillar cavities. We have performed numerical simulations through the finite element method that allowed us to explain the three-dimensional confinement mechanisms of optical and mechanical modes in these systems, and to calculate the main optomechanical parameters. This work shows that GaAs/AlAs micropillars present very interesting properties for future optomechanical experiments, such as very high mechanical resonance frequencies, large optical and mechanical quality factors at room temperature, and high values for the vacuum optomechanical coupling factors and for the Q • f products
|
2 |
Invariants Topologiques d'Arrangements de droites / Topological invariants of line arrangementsGuerville, Benoît 06 December 2013 (has links)
Cette thèse est le point d’intersection entre deux facettes de l’étude des arrangements de droites : la combinatoire et la topologie. Dans une première partie nous avons étudié l’inclusion de la variété bord dans le complémentaire d’un arrangement. Nous avons ainsi généralisé le résultat d’E. Hironaka au cas de tous les arrangements complexes. Pour contourner les problèmes provenant des arrangements non réels, nous avons étudié le diagramme de câblage, dit wiring diagram, qui code la monodromie de tresses sous forme de tresse singulière. Pour pouvoir l'utiliser, nous avons implémenté un programme sur Sage permettant de calculer ce diagramme en fonction des équations de l’arrangement. Cela nous a permis de d’obtenir deux descriptions explicites de l’application induite par l’inclusion de la variété bord dans le complémentaire sur les groupes fondamentaux. Nous obtenons ainsi deux nouvelles présentations du groupe fondamental du complémentaire d’un arrangement. L’une d’entre elle généralise le théorème de R. Randell au cas des arrangements complexes. Pour continuer ces travaux, nous avons étudié l’application induite par l’inclusion sur le premier groupe d’homologie. Nous obtenons deux descriptions simples de cette application. En s’inspirant des travaux de J.I. Cogolludo, nous décrivons une décomposition canonique du premier groupe d’homologie de la variété bord comme produit de la 1-homologie et de la 2-cohomologie du complémentaire, ainsi qu'un isomorphisme entre la 2-cohomologie du complémentaire et la 1-homologie du graphe d’incidence. Dans la seconde partie de notre travail nous nous sommes intéressés à l’étude des caractères du groupe fondamental du complémentaire. Nous partons des résultats obtenus par E. Artal sur le calcul de la profondeur d’un caractère. Cette profondeur peut être décomposée en un terme projectif et un terme quasi-projectif. Un algorithme pour calculer la partie projective a été donné par A. Libgober. Les travaux de E. Artal concernent la partie quasi-projective. Il a obtenu une méthode pour la calculer en fonction de l’image de certains cycles particuliers du complémentaire par le caractère. En utilisant les résultats obtenus dans la première partie, nous avons obtenu un algorithme complet permettant le calcul de la profondeur quasi-projective d’un caractère. A travers l’étude de cet algorithme, nous avons obtenu une condition combinatoire pour admettre une profondeur quasi-projective potentiellement non combinatoire. Nous avons ainsi défini la notion de caractère inner-cyclic . Cette notion nous a permis de formuler des conditions fortes sur la combinatoire pour qu’un arrangement n’ait que des caractères de profondeur quasi-projective nulle. Enfin pour diminuer le nombre d’exemples à considérer nous avons introduit la notion de combinatoire première. Si une combinatoire ne l’est pas, alors les variétés caractéristiques de ses réalisations sont définies par celles d’un arrangement avec moins de droites. En parallèle à cette étude, nous avons observé que la composition de l’application induite par l’inclusion sur le premier groupe d’homologie avec un caractère nous fournit un invariant topologique de l'arrangement obtenu en désingularisant les points multiples (blow-up). De plus, nous montrons que cet invariant n’est pas de nature combinatoire. Il nous a ainsi permis de découvrir deux nouvelles nc-paires de Zariski. / This thesis is the intersection point between the two facets of the study of line arrangements: combinatorics and topology. In the first part, we study the inclusion of the boundary manifold in the complement of an arrangement. We generalize the results of E. Hironaka to the case of any complex line arrangement. To get around the problems due to the case of non complexified real arrangement, we study the braided wiring diagram. We develop a Sage program to compute it from the equation of the complex line arrangement. This diagram allows to give two explicit descriptions of the map induced by the inclusion on the fundamental groups. From theses descriptions, we obtain two new presentations of the fundamental group of the complement. One of them is a generalization of the R. Randell Theorem to any complex line arrangement. In the next step of this work, we study the map induced by the inclusion on the first homology group. Then we obtain two simple descriptions of this map. Inspired by ideas of J.I. Cogolludo, we give a canonical description of the homology of the boundary manifold as the product of the 1-homology with the 2-cohomology of the complement. Finally, we obtain an isomorphism between the 2-cohomology of the complement with the 1-homology of the incidence graph of the arrangement. In the second part, we are interested by the study of character on the group of the complement. We start from the results of E. Artal on the computation of the depth of a character. This depth can be decomposed into a projective term and a quasi-projective term, vanishing for characters that ramify along all the lines. An algorithm to compute the projective part is given by A. Libgober. E. Artal focuses on the quasi-projective part and gives a method to compute it from the image by the character of certain cycles of the complement. We use our results on the inclusion map of the boundary manifold to determine these cycles explicitly. Combined with the work of E. Artal we obtain an algorithm to compute the quasi-projective depth of any character. From the study of this algorithm, we obtain a strong combinatorial condition on characters to admit a quasi-projective depth potentially not determined by the combinatorics. With this property, we define the inner-cyclic characters. From their study, we observe a strong condition on the combinatorics of an arrangement to have only characters with null quasi-projective depth. Related to this, in order to reduce the number of computations, we introduce the notion of prime combinatorics. If a combinatorics is not prime, then the characteristics varieties of its realizations are completely determined by realization of a prime combinatorics with less line. In parallel, we observe that the composition of the map induced by the inclusion with specific characters provide topological invariants of the blow-up of arrangements. We show that the invariant captures more than combinatorial information. Thereby, we detect two new examples of nc-Zariski pairs.
|
3 |
Espaces non-euclidiens et analyse d'image : modèles déformables riemanniens et discrets, topologie et géométrie discrèteLachaud, Jacques-Olivier 06 December 2006 (has links) (PDF)
Les travaux présentés dans ce mémoire d'habilitation correspondent à des recherches effectuées depuis mon arrivée à Bordeaux en septembre 1999. J'ai choisi d'y présenter celles qui ont trait aux approches non-euclidiennes pour l'analyse d'image, la clé de voûte en étant la segmentation par modèle déformable. D'autres travaux plus amonts comme la topologie des espaces subdivisés et les invariants topologiques ou plus avals comme la reconstruction de colonne vertébrale en imagerie radiographique ne seront qu'évoqués. Ce choix, s'il peut sembler restrictif par rapport à une synthèse exhaustive de mes travaux, présente néanmoins une plus grande cohérence, à la fois dans les résultats et dans la démarche suivie. Ce mémoire montre notamment que l'utilisation d'autres géométries que la géométrie euclidienne classique, les géométries riemannienne et discrète, présente un intérêt certain en analyse d'images. Les modèles déformables constituent une technique classique de segmentation et de reconstruction en analyse d'image. Dans ce cadre, le problème de la segmentation est exprimé sous forme variationnelle, où la solution est idéalement le minimum d'une fonctionnelle. Pendant ma thèse, je m'étais déjà intéressé aux modèles hautement déformables, qui ont la double caractéristique de se baser uniquement sur l'information image pour repérer ses composantes et de pouvoir extraire des formes de complexité arbitraire. Pour assurer l'initialisation du modèle déformable, j'avais aussi mis en évidence les liens entre surfaces discrètes et triangulations d'isosurfaces. Ces premiers travaux expliquent le cheminement que j'ai suivi depuis dans mes recherches. En voulant attaquer deux problématiques fondamentales des modèles déformables (la minimisation du nombre de paramètres et de la complexité, la recherche d'une solution plus proche de l'optimale), j'ai été amené à changer l'espace de travail classique : l'espace euclidien. Le Chapitre 1 résume les approches classiques des modèles déformables, leurs différentes formulations, ainsi que les problématiques spécifiques auxquelles je me suis intéressé. Il montre enfin en quoi la formulation des modèles déformables dans des espaces non-euclidiens ouvre des pistes intéressantes pour les résoudre. La première voie explorée et résumée dans le Chapitre 2 est d'introduire une métrique riemannienne, variable dans l'espace et dépendante de l'information image locale. L'utilisation d'une autre métrique permet de déformer virtuellement l'espace afin de concentrer l'effort de calcul sur les zones d'intérêt de l'image. Une métrique judicieusement choisie permet d'adapter le nombre de paramètres du modèle déformable à la géométrie de la forme recherchée. Le modèle pourra ainsi se déplacer très vite sur les zones homogènes, extraire les parties droites, planes ou peu courbées avec très peu de paramètres, et conserver une grande précision sur les contours significatifs très courbés. Une telle approche conserve voire améliore la qualité et la robustesse de la segmentation, et minimise à la fois la complexité en temps et le nombre d'itérations avant convergence. La deuxième voie explorée parallèlement est le remplacement de l'espace euclidien continu par la grille cellulaire discrète. L'espace des formes possibles est alors fini tout en restant adapté à l'échantillonnage de l'image. D'autres techniques d'optimisation sont dès lors envisageables, la solution est bien définie et les problèmes numériques liés à la convergence d'un processus ne sont plus présents. Le Chapitre 3 décrit le principe suivi pour discrétiser le modèle déformable sur la grille cellulaire Z^n. Il présente les premiers résultats obtenus avec un algorithme de segmentation a posteriori. Il met aussi en évidence les problématiques soulevées par le passage au discret, problématiques qui se sont révélées être des voies de recherche par elles-mêmes. D'une part, il faut mettre au point des structures de données et des outils pour représenter les surfaces discrètes, pour mesurer leurs paramètres géométriques, et pour les faire évoluer. Le Chapitre 4 synthétise les travaux menés en ce sens. Cela nous conduit à proposer un nouveau formalisme algébrique pour représenter ces surfaces en dimension quelconque. Une étude précise des estimateurs géométriques discrets de tangente, de normale, de longueur et de courbure est ensuite conduite. Nous avons notamment évalué quantitativement leurs performances à basse échelle et proposé de nouveaux estimateurs pour les améliorer. Leurs propriétés asymptotiques lorsque la discrétisation est de plus en plus fine sont enfin discutées. D'autre part, le modèle déformable discret doit approcher au mieux le comportement du modèle déformable euclidien à résolution donnée mais aussi simuler de plus en plus exactement ce comportement lorsque la résolution augmente asymptotiquement. Les estimateurs géométriques discrets se doivent dès lors d'être convergents. En analysant finement la décomposition des courbes discrètes en segments discrets maximaux, nous avons obtenu des théorèmes de convergence ou de non-convergence de certains estimateurs. Le Chapitre 5 résume cette étude de la géométrie des courbes discrètes 2D et des propriétés géométriques asymptotiques du bord d'une discrétisation. Le mémoire se conclut par une synthèse des principaux résultats obtenus et montre les perspectives de recherche ouvertes par ces travaux.
|
4 |
Contributions aux Cartes Combinatoires et Cartes Généralisées : Simplification, Modèles, Invariants Topologiques et ApplicationsDamiand, Guillaume 23 September 2010 (has links) (PDF)
Ce mémoire résume nos principales contributions aux cartes combinatoires et cartes généralisées, deux modèles combinatoires représentant des subdivisions d'objets en cellules (sommets, arêtes, faces, volumes, ...). Ces modèles possèdent plusieurs avantages qui justifient leurs utilisations dans plusieurs domaines comme la modélisation géométrique et l'analyse d'images : ils sont définis en dimension quelconque à partir d'un seul type d'élément ; ils décrivent les cellules de la subdivision ainsi que toutes les relations d'adjacence et d'incidence entre ces cellules ; des contraintes de cohérence permettent de tester la validité des objets manipulés ; ils autorisent la mise en oeuvre d'algorithmes locaux, qui sont simples et efficaces en complexité. Nos travaux portent sur l'étude de ces modèles et sur la définition d'algorithmes. Nous avons tout d'abord défini quatre opérations de base : la suppression, la contraction, l'insertion et l'éclatement. Ces opérations sont les briques de base permettant de modifier un objet et peuvent être vues comme une généralisation des opérateurs d'Euler. Elles sont définies de manière générale en dimension quelconque. Il est ensuite possible d'ajouter des contraintes supplémentaires selon les applications et selon les propriétés spécifiques à conserver. Ces opérations sont au coeur de nos travaux. Nous les avons utilisées pour définir la carte topologique 2D et 3D, un modèle décrivant la partition d'une image en régions, puis pour définir des opérations de fusion et de découpe sur les cartes topologiques. Nous avons également défini les pyramides généralisées qui peuvent être vues comme des piles de cartes, chacune étant obtenue par simplification de la carte précédente. Enfin, nous avons proposé des algorithmes de calcul d'invariants topologiques : la caractéristique d'Euler-Poincaré, le schéma polygonal canonique, les nombres de Betti et les groupes d'homologies. Dans ces quatre cas, nous avons à nouveau utilisé les opérations de base afin de proposer des méthodes de mise à jour locales, ou pour simplifier la carte dans l'objectif d'accélérer les calculs du fait de la diminution du nombre de cellules. Nous avons utilisé ces travaux théoriques dans différentes applications. En modélisation géométrique, nous présentons le modeleur Moka qui est un modeleur géométrique à base topologique. Différentes applications se sont basées sur ce modeleur et nous présentons plus en détail une méthode de reconstruction automatique de bâtiments 3D à partir de plans numériques 2D. En traitement d'images, nous avons utilisé les cartes topologiques afin de proposer des algorithmes de segmentation d'images 2D et 3D pouvant intégrer un contrôle topologique.
|
Page generated in 0.0574 seconds