Return to search

Ab Initio Ultrafast Laser-Induced Charge Transfer Dynamics in All-Organic and Hybrid Inorganic-Organic Interfaces

Die Entwicklung optoelektronischer Geräte wurde stark durch organische Donor-Akzeptor-Komplexe beeinflusst, die eine zentrale Rolle in der modernen Optoelektronik spielen. Diese Materialien ermöglichen ein komplexes Zusammenspiel elektronischer, optischer und phononischer Eigenschaften. Frühe Arbeiten zu konjugierten Polymeren in OLEDs und Bulk-Heterojunktionen in organischen Photovoltaikzellen legten das Fundament für praktikable OLEDs und verbesserten die Effizienz in OPVs.

Kürzlich hat sich das Forschungsfeld auf hybride anorganisch-organische Systeme ausgeweitet. Diese Materialien kombinieren die hohe Ladungsträgerdichte und -mobilität der anorganischen Komponenten mit den Lichtausbeute- und Emissionscharakteristika organischer Moleküle. Die Integration von Übergangsmetall-Dichalcogenid-Monoschichten hat bedeutende Fortschritte gebracht, besonders für die Feineinstellung der Ladungstransferdynamik.

Diese Entwicklungen stellen neue Herausforderungen dar, insbesondere bei der Modellierung laserinduzierter, ultraschneller Ladungstransferdynamik. RT-TDDFT hat sich als effizientes und genaues Werkzeug erwiesen, das für die Untersuchung großer Systeme geeignet ist und die Simulation zeitaufgelöster Phänomene ermöglicht.

Diese Dissertation analysiert die laserinduzierte Ladungstransferdynamik in vollständig organischen und hybriden anorganisch-organischen Grenzflächen. Sie untersucht die Komplexität stark und schwach gebundener Grenzflächen und deren Verhalten unter externen Laserpulsen sowie den Temperatureffekten auf die Ladungstransferdynamik. Die Nutzung von RT-TDDFT zur Modellierung ultraschneller Elektronendynamik und vibronischer Kopplung hat das Verständnis in diesem Feld vertieft und die Effektivität bei der Modellierung optoelektronischer Geräte demonstriert. / The development of optoelectronic devices has been significantly influenced by organic donor-acceptor complexes, which play a central role in modern optoelectronics. These materials enable a complex interplay of electronic, optical, and phononic properties. Early work on conjugated polymers in OLEDs and bulk heterojunctions in organic photovoltaic cells laid the foundation for practical OLEDs and improved efficiency in OPVs.

Recently, the field of research has expanded to hybrid inorganic-organic systems. These materials combine the high charge carrier density and mobility of inorganic components with the light yield and emission characteristics of organic molecules. The integration of transition metal dichalcogenide monolayers has brought significant advances, particularly in fine-tuning charge transfer dynamics.

These developments present new challenges, especially in modeling laser-induced, ultrafast charge transfer dynamics. RT-TDDFT has proven to be an efficient and accurate tool suitable for studying large systems and enabling the simulation of time-resolved phenomena.

This dissertation analyzes the laser-induced charge transfer dynamics in fully organic and hybrid inorganic-organic interfaces. It investigates the complexity of strongly and weakly bound interfaces and their behavior under external laser pulses, as well as the temperature effects on charge transfer dynamics. The use of RT-TDDFT to model ultrafast electron dynamics and vibronic coupling has deepened the understanding in this evolving field and demonstrated its effectiveness in modeling optoelectronic devices.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/29714
Date09 July 2024
CreatorsRychescki Jacobs, Matheus
ContributorsCocchi, Caterina, Caruso, Fabio, Sentef, Michael
PublisherHumboldt-Universität zu Berlin
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageEnglish
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
Rights(CC BY-NC 4.0) Attribution-NonCommercial 4.0 International, https://creativecommons.org/licenses/by-nc/4.0/
Relation10.1021/acs.jpca.3c03709, 10.1088/2516-1075/ad4d46, 10.1021/acsanm.2c00253, 23746149.2020.1749883

Page generated in 0.0078 seconds