L'objectif général de cette thèse est d'appliquer une méthode d'optimisation polynomiale basée sur la théorie des moments à certains problèmes de vision artificielle. Ces problèmes sont en général non convexes et classiquement résolus à l'aide de méthodes d'optimisation locale. Ces techniques ne convergent généralement pas vers le minimum global et nécessitent de fournir une estimée initiale proche de la solution exacte. Les méthodes d'optimisation globale permettent d'éviter ces inconvénients. L'optimisation polynomiale basée sur la théorie des moments présente en outre l'avantage de prendre en compte des contraintes. Dans cette thèse nous étendrons cette méthode aux problèmes de minimisation d'une somme d'un grand nombre de fractions rationnelles. De plus, sous certaines hypothèses de "faible couplage" ou de "parcimonie" des variables du problème, nous montrerons qu'il est possible de considérer un nombre important de variables tout en conservant des temps de calcul raisonnables. Enfin nous appliquerons les méthodes proposées aux problèmes de vision par ordinateur suivants : minimisation des distorsions projectives induites par le processus de rectification d'images, estimation de la matrice fondamentale, reconstruction 3D multi-vues avec et sans distorsions radiales.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00771425 |
Date | 05 October 2012 |
Creators | Bugarin, Florian |
Publisher | Institut National Polytechnique de Toulouse - INPT |
Source Sets | CCSD theses-EN-ligne, France |
Language | fra |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0024 seconds