• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 4
  • 2
  • Tagged with
  • 9
  • 9
  • 8
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vision 3D multi-images : contribution à l'obtention de solutions globales par optimisation polynomiale et théorie des moments

Bugarin, Florian 05 October 2012 (has links) (PDF)
L'objectif général de cette thèse est d'appliquer une méthode d'optimisation polynomiale basée sur la théorie des moments à certains problèmes de vision artificielle. Ces problèmes sont en général non convexes et classiquement résolus à l'aide de méthodes d'optimisation locale. Ces techniques ne convergent généralement pas vers le minimum global et nécessitent de fournir une estimée initiale proche de la solution exacte. Les méthodes d'optimisation globale permettent d'éviter ces inconvénients. L'optimisation polynomiale basée sur la théorie des moments présente en outre l'avantage de prendre en compte des contraintes. Dans cette thèse nous étendrons cette méthode aux problèmes de minimisation d'une somme d'un grand nombre de fractions rationnelles. De plus, sous certaines hypothèses de "faible couplage" ou de "parcimonie" des variables du problème, nous montrerons qu'il est possible de considérer un nombre important de variables tout en conservant des temps de calcul raisonnables. Enfin nous appliquerons les méthodes proposées aux problèmes de vision par ordinateur suivants : minimisation des distorsions projectives induites par le processus de rectification d'images, estimation de la matrice fondamentale, reconstruction 3D multi-vues avec et sans distorsions radiales.
2

Programmation DC et DCA en optimisation combinatoire et optimisation polynomiale via les techniques de SDP : codes et simulations numériques

Niu, Yi Shuai 28 May 2010 (has links) (PDF)
L'objectif de cette thèse porte sur des recherches théoriques et algorithmiques d'optimisation locale et globale via les techniques de programmation DC & DCA, Séparation et Evaluation (SE) ainsi que les techniques de relaxation DC/SDP, pour résoudre plusieurs types de problèmes d'optimisation non convexe (notamment en Optimisation Combinatoire et Optimisation Polynomiale). La thèse comporte quatre parties :La première partie présente les outils fondamentaux et les techniques essentielles en programmation DC & l'Algorithme DC (DCA), ainsi que les techniques de relaxation SDP, et les méthodes de séparation et évaluation (SE).Dans la deuxième partie, nous nous intéressons à la résolution de problèmes de programmation quadratique et linéaire mixte en variables entières. Nous proposons de nouvelles approches locales et globales basées sur DCA, SE et SDP. L'implémentation de logiciel et des simulations numériques sont aussi étudiées.La troisième partie explore des approches de la programmation DC & DCA en les combinant aux techniques SE et SDP pour la résolution locale et globale de programmes polynomiaux. Le programme polynomial avec des fonctions polynomiales homogènes et son application à la gestion de portefeuille avec moments d'ordre supérieur en optimisation financière ont été discutés de manière approfondie dans cette partie.Enfin, nous étudions dans la dernière partie un programme d'optimisation sous contraintes de type matrices semi-définies via nos approches de la programmation DC. Nous nous consacrons à la résolution du problème de réalisabilité des contraintes BMI et QMI en contrôle optimal.L'ensemble de ces travaux a été implémenté avec MATLAB, C/C++ ... nous permettant de confirmer l'utilisation pratique et d'enrichir nos travaux de recherche.
3

Analyse et contrôle des systèmes dynamiques polynomiaux / Analysis and Control of Polynomial Dynamical Systems

Ben Sassi, Mohamed Amin 15 April 2013 (has links)
Cette thèse présente une étude des systèmes dynamiques polynomiaux motivée à la fois par le grand spectre d'applications de cetteclasse (modèles de réactions chimiques, modèles de circuits électriques ainsi que les modèles biologiques) et par la difficulté (voire incapacité)de la résolution théorique de tels systèmes. Dans une première partie préliminaire, nous présentons les polynômes multi-variés et nous introduisons les notions de forme polaire d'un polynôme (floraison) et de polynômes de Bernstein qui seront d'un grand intérêt par la suite. Dans une deuxième partie, nous considérons le problème d'optimisation polynomial dit POP. Nous décrivons dans un premier temps les principales méthodes existantes permettant de résoudre ou d'approcher la solution d'un tel problème. Puis, nous présentons deux relaxations linéaires se basant respectivement sur le principe de floraison ainsi que les polynômes de Bernstein permettant d'approcher la valeur optimale du POP. La dernière partie de la thèse sera consacré aux applications de nos deux méthodes de relaxation dans le cadre des systèmes dynamiques polynomiaux. Une première application s'inscrit dans le cadre de l'analyse d'atteignabilité: en effet, on utilisera notre relaxation de Bernsteinpour pouvoir construire un algorithme permettant d'approximer les ensembles atteignables d'un système dynamique polynomial discrétisé. Une deuxième application sera la vérification et le calcul d'invariants pour un système dynamique polynomial. Une troisième application consiste à calculer un contrôleur et un invariant pour un système dynamique polynomial soumis à des perturbations. Dans le contexte de l'invariance, on utilisera la relaxation se basant sur le principe de floraison.Enfin, une dernière application sera d'exploiter les principales propriétés de la forme polaire pour pouvoir étudier des systèmes dynamiques polynomiaux dans des rectangles. / This thesis presents a study of polynomial dynamical systems motivated by both thewide spectrum of applications of this class (chemical reaction models, electrical modelsand biological models) and the difficulty (or inability) of theoretical resolutionof such systems.In a first preliminary part, we present multivariate polynomials and we introducethe notion of polar form of a polynomial (blossoming) and Bernstein polynomialswhich will be of great interest thereafter.In a second part, we consider the polynomial optimization problem said POP.We first describe existing methods allowing us to solve or approximate the solution5TABLE DES MATI`ERES 6of such problems. Then, we present two linear relaxations based respectively on theblossoming principle and the Bernstein polynomials allowing us to approximate theoptimal value of the POP.The last part of the thesis is devoted to applications of the two relaxation methodsin the context of polynomial dynamical systems. A first application is in thecontext of reachability analysis. In fact, we use our Bernstein relaxation in order tobuild an algorithm allowing us to approximate the reachable sets of a discretizedpolynomial dynamical system. A second application deals with the verification andthe computation of invariants for polynomial dynamical systems. A third applicationconsists in calculating a controller and an invariant for a polynomial dynamicalsystem subject to disturbances. For the invariance problem, we use the relaxationbased on the blossoming principle. Finally, the last application consists in exploitingthe main properties of the polar form in order to study polynomial dynamicalsystems in rectangles.
4

Vision 3D multi-images : contribution à l’obtention de solutions globales par optimisation polynomiale et théorie des moments / Contribution to the global resolution of minimization problems in computer vision by polynomial optimization and moments theory

Bugarin, Florian 05 October 2012 (has links)
L’objectif général de cette thèse est d’appliquer une méthode d’optimisation polynomiale basée sur la théorie des moments à certains problèmes de vision artificielle. Ces problèmes sont en général non convexes et classiquement résolus à l’aide de méthodes d’optimisation locales Ces techniques ne convergent généralement pas vers le minimum global et nécessitent de fournir une estimée initiale proche de la solution exacte. Les méthodes d’optimisation globale permettent d’éviter ces inconvénients. L’optimisation polynomiale basée sur la théorie des moments présente en outre l’avantage de prendre en compte des contraintes. Dans cette thèse nous étendrons cette méthode aux problèmes de minimisation d’une somme d’un grand nombre de fractions rationnelles. De plus, sous certaines hypothèses de "faible couplage" ou de "parcimonie" des variables du problème, nous montrerons qu’il est possible de considérer un nombre important de variables tout en conservant des temps de calcul raisonnables. Enfin nous appliquerons les méthodes proposées aux problèmes de vision par ordinateur suivants : minimisation des distorsions projectives induites par le processus de rectification d’images, estimation de la matrice fondamentale, reconstruction 3D multi-vues avec et sans distorsions radiales. / The overall objective of this thesis is to apply a polynomial optimization method, based on moments theory, on some vision problems. These problems are often nonconvex and they are classically solved using local optimization methods. Without additional hypothesis, these techniques don’t converge to the global minimum and need to provide an initial estimate close to the exact solution. Global optimization methods overcome this drawback. Moreover, the polynomial optimization based on moments theory could take into account particular constraints. In this thesis, we extend this method to the problems of minimizing a sum of many rational functions. In addition, under particular assumptions of "sparsity", we show that it is possible to deal with a large number of variables while maintaining reasonable computation times. Finally, we apply these methods to particular computer vision problems: minimization of projective distortions due to image rectification process, Fundamental matrix estimation, and multi-view 3D reconstruction with and without radial distortions.
5

Analyse et contrôle des systèmes dynamiques polynomiaux

Ben Sassi, Mohamed Amine 15 April 2013 (has links) (PDF)
Cette thèse présente une étude des systèmes dynamiques polynomiaux motivée à la fois par le grand spectre d'applications de cette classe (modèles de réactions chimiques, modèles de circuits électriques ainsi que les modèles biologiques) et par la difficulté (voire incapacité) de la résolution théorique de tels systèmes. Dans une première partie préliminaire, nous présentons les polynômes multivariés et nous introduisons les notions de forme polaire d'un polynôme (floraison) et de polynômes de Bernstein qui seront d'un grand intérêt par la suite. Dans une deuxième partie, nous considérons le problème d'optimisation polynomial dit POP. Nous décrivons dans un premier temps les principales méthodes existantes permettant de résoudre ou d'approcher la solution d'un tel problème. Puis, nous présentons deux relaxations linéaires se basant respectivement sur le principe de floraison ainsi que les polynômes de Bernstein permettant d'approcher la valeur optimale du POP. La dernière partie de la thèse sera consacrée aux applications de nos deux méthodes de relaxation dans le cadre des systèmes dynamiques polynomiaux. Une première application s'inscrit dans le cadre de l'analyse d'atteignabilité : en effet, on utilisera notre relaxation de Bernstein pour pouvoir construire un algorithme permettant d'approximer les ensembles atteignables d'un système dynamique polynomial discrétisé. Une deuxième application sera la vérification et le calcul d'invariants pour un système dynamique polynomial. Une troisième application consiste à calculer un contrôleur et un invariant pour un système dynamique polynomial soumis à des perturbations. Dans le contexte de l'invariance, on utilisera la relaxation se basant sur le principe de floraison. Enfin, une dernière application sera d'exploiter les principales propriétés de la forme polaire pour pouvoir étudier des systèmes dynamiques polynomiaux dans des rectangles.
6

Application of polynomial optimization to electricity transmission networks / Application de l'optimisation polynomiale aux réseaux de transport d'électricité

Josz, Cédric 13 July 2016 (has links)
Les gestionnaires des réseaux de transport d'électricité doivent adapter leurs outils d'aide à la décision aux avancées technologiques du XXIième siècle. Une opération sous-jacente à beaucoup d'outils est de calculer les flux en actif/réactif qui minimisent les pertes ou les coûts de production. Mathématiquement, il s'agit d'un problème d'optimisation qui peut être décrit en utilisant seulement l'addition et la multiplication de nombres complexes. L'objectif de cette thèse est de trouver des solutions globales. Un des aboutissements de ce projet doctoral hautement collaboratif est d'utiliser des résultats récents en géométrie algébrique pour calculer des flux optimaux dans le réseau Européen à haute tension. / Transmission system operators need to adapt their decision-making tools to the technological evolutions of the twenty first century. A computation inherent to most tools seeks to find alternating-current power flows that minimize power loss or generation cost. Mathematically, it consists in an optimization problem that can be described using only addition and multiplication of complex numbers. The objective of this thesis is to find global solutions, in other words the best solutions to the problem. One of the outcomes of this highly collaborative doctoral project is to use recent results from algebraic geometry to compute globally optimal power flows in the European high-voltage transmission network.
7

Vision 3D multi-images : contribution à l'obtention de solutions globales par optimisation polynomiale et théorie des moments

Bugarin, Florian 05 October 2012 (has links) (PDF)
L'objectif général de cette thèse est d'appliquer une méthode d'optimisation polynomiale basée sur la théorie des moments à certains problèmes de vision artificielle. Ces problèmes sont en général non convexes et classiquement résolus à l'aide de méthodes d'optimisation locale. Ces techniques ne convergent généralement pas vers le minimum global et nécessitent de fournir une estimée initiale proche de la solution exacte. Les méthodes d'optimisation globale permettent d'éviter ces inconvénients. L'optimisation polynomiale basée sur la théorie des moments présente en outre l'avantage de prendre en compte des contraintes. Dans cette thèse nous étendrons cette méthode aux problèmes de minimisation d'une somme d'un grand nombre de fractions rationnelles. De plus, sous certaines hypothèses de "faible couplage" ou de "parcimonie" des variables du problème, nous montrerons qu'il est possible de considérer un nombre important de variables tout en conservant des temps de calcul raisonnables. Enfin nous appliquerons les méthodes proposées aux problèmes de vision par ordinateur suivants : minimisation des distorsions projectives induites par le processus de rectification d'images, estimation de la matrice fondamentale, reconstruction 3D multi-vues avec et sans distorsions radiales.
8

Matrices de moments, géométrie algébrique réelle et optimisation polynomiale / Moments matrices, real algebraic geometry and polynomial optimization

Abril Bucero, Marta 12 December 2014 (has links)
Le but de cette thèse est de calculer l'optimum d'un polynôme sur un ensemble semi-algébrique et les points où cet optimum est atteint. Pour atteindre cet objectif, nous combinons des méthodes de base de bord avec la hiérarchie de relaxation convexe de Lasserre afin de réduire la taille des matrices de moments dans les problèmes de programmation semi-définie positive (SDP). Afin de vérifier si le minimum est atteint, nous apportons un nouveau critère pour vérifier l'extension plate de Curto Fialkow utilisant des bases orthogonales. En combinant ces nouveaux résultats, nous fournissons un nouvel algorithme qui calcule l'optimum et les points minimiseurs. Nous décrivons plusieurs expérimentations et des applications dans différents domaines qui prouvent la performance de l'algorithme. Au niveau théorique nous prouvons aussi la convergence finie d'une hiérarchie SDP construite à partir d'un idéal de Karush-Kuhn-Tucker et ses conséquences dans des cas particuliers. Nous étudions aussi le cas particulier où les minimiseurs ne sont pas des points de KKT en utilisant la variété de Fritz-John. / The objective of this thesis is to compute the optimum of a polynomial on a closed basic semialgebraic set and the points where this optimum is reached. To achieve this goal we combine border basis method with Lasserre's hierarchy in order to reduce the size of the moment matrices in the SemiDefinite Programming (SDP) problems. In order to verify if the minimum is reached we describe a new criterion to verify the flat extension condition using border basis. Combining these new results we provide a new algorithm which computes the optimum and the minimizers points. We show several experimentations and some applications in different domains which prove the perfomance of the algorithm. Theorethically we also prove the finite convergence of a SDP hierarchie contructed from a Karush-Kuhn-Tucker ideal and its consequences in particular cases. We also solve the particular case where the minimizers are not KKT points using Fritz-John Variety.
9

Programmation DC et DCA en optimisation combinatoire et optimisation polynomiale via les techniques de SDP : codes et simulations numériques / DC programming and DCA combinatorial optimization and polynomial optimization via SDP techniques

Niu, Yi Shuai 28 May 2010 (has links)
L’objectif de cette thèse porte sur des recherches théoriques et algorithmiques d’optimisation locale et globale via les techniques de programmation DC & DCA, Séparation et Evaluation (SE) ainsi que les techniques de relaxation DC/SDP, pour résoudre plusieurs types de problèmes d’optimisation non convexe (notamment en Optimisation Combinatoire et Optimisation Polynomiale). La thèse comporte quatre parties :La première partie présente les outils fondamentaux et les techniques essentielles en programmation DC & l’Algorithme DC (DCA), ainsi que les techniques de relaxation SDP, et les méthodes de séparation et évaluation (SE).Dans la deuxième partie, nous nous intéressons à la résolution de problèmes de programmation quadratique et linéaire mixte en variables entières. Nous proposons de nouvelles approches locales et globales basées sur DCA, SE et SDP. L’implémentation de logiciel et des simulations numériques sont aussi étudiées.La troisième partie explore des approches de la programmation DC & DCA en les combinant aux techniques SE et SDP pour la résolution locale et globale de programmes polynomiaux. Le programme polynomial avec des fonctions polynomiales homogènes et son application à la gestion de portefeuille avec moments d’ordre supérieur en optimisation financière ont été discutés de manière approfondie dans cette partie.Enfin, nous étudions dans la dernière partie un programme d’optimisation sous contraintes de type matrices semi-définies via nos approches de la programmation DC. Nous nous consacrons à la résolution du problème de réalisabilité des contraintes BMI et QMI en contrôle optimal.L’ensemble de ces travaux a été implémenté avec MATLAB, C/C++ ... nous permettant de confirmer l’utilisation pratique et d’enrichir nos travaux de recherche. / The main objective of this thesis focuses on theoretical and algorithmic researches of local and global optimization techniques to DC programming & DCA with Branch and Bound (B&B) and the DC/SDP relaxation techniques to solve several types of non-convex optimization problems (including Combinatorial Optimization and Polynomial Optimization). This thesis is divided into four parts :We present in the first part some fondamental theorems and essential techniques in DC programming & DC Algorithm (DCA), the SDP Relaxation techniques, as well as the Branch and Bound methods (B&B).In the second part, we are interested in solving mixed integer quadratic and linear programs. We propose new local and global approaches based on DCA, B&B and SDP. The implementation of software and numerical simulations have also been investigated.The third part explores the DC programming approaches & DCA combined with a B&B technique and SDP for locally and globally solving a class of polynomial programming. The polynomial program with homogeneous polynomial functionsand its application to portfolio selection problem involving higher order moments in financial optimization have been deeply studied in this part.Finally, in the last part, we present our research on optimization problems under constraints of semi-definite matrices via our DC programming approaches. This part is dedicated to the resolution of the BMI and QMI feasibility problems in the field of optimal control.All these proposed methods have been implemented with MATLAB, C++ etc., that allowing us to confirm the practical use and enrich our research works.

Page generated in 0.1295 seconds