Spelling suggestions: "subject:"programmation DC"" "subject:"programmations DC""
1 |
Modélisation et optimisation non convexe basées sur la programmation DC et DCA pour la résolution de certaines classes des problèmes en fouille de données et cryptologie / The non-convex modeling and optimization based on the DC programming and DCA for the resolution of certain classes of problems in Data Mining and cryptologyLe, Hoai Minh 24 October 2007 (has links)
Cette thèse est consacrée à la modélisation et l'optimisation non convexe basées sur la programmation DC et DCA pour certaines classes de problèmes issus de deux domaines importants : le Data Mining et la Cryptologie. Il s'agit des problèmes d'optimisation non convexe de très grande dimension pour lesquels la recherche des bonnes méthodes de résolution est toujours d'actualité. Notre travail s'appuie principalement sur la programmation DC et DCA. Cette démarche est motivée par la robustesse et la performance de la programmation DC et DCA, leur adaptation aux structures des problèmes traités et leur capacité de résoudre des problèmes de grande dimension. La thèse est divisée en trois parties. Dans la première partie intitulée Méthodologie nous présentons des outils théoriques servant des références aux autres. Le premier chapitre concerne la programmation DC et DCA tandis que le deuxième porte sur les algorithmes génétiques. Dans la deuxième partie nous développons la programmation DC et DCA pour la résolution de deux classes de problèmes en Data Mining. Dans le chapitre quatre, nous considérons le modèle de la classification floue FCM et développons la programmation DC et DCA pour sa résolution. Plusieurs formulations DC correspondants aux différentes décompositions DC sont proposées. Notre travail en classification hiérarchique (chapitre cinq) est motivé par une de ses applications intéressante et très importantes, à savoir la communication multicast. C'est un problème non convexe, non différentiable de très grande dimension pour lequel nous avons reformulé sous la forme des trois programmes DC différents et développé les DCA correspondants. La troisième partie porte sur la Cryptologie. Le premier concerne la construction des fonctions booléennes équilibrées de haut degré de non-linéarité - un des problèmes cruciaux en Cryptographie. Plusieurs versions de combinaison de deux approches - DCA et les algorithmes génétiques (AG) sont étudiées dans le but d'exploiter simultanément l'efficacité de chaque approche. Le deuxième travail concerne des techniques de cryptanalyse d'un schéma d'identification basé sur les deux problèmes ''Perceptron'' (PP) et ''Perceptron Permuté'' (PPP). Nous proposons une méthode de résolution des deux problèmes PP et PPP par DCA et une méthode de coupes dans le dernier chapitre / This thesis is dedicated to non-convex modeling and the optimization based on the DC programming and DCA for certain classes of problems of two important domains : the Data Mining and the Cryptology. They are non-convex optimization problems of very large dimensions for which the research of good solution methods is always of actuality. Our work is based mainly on the DC programming and DCA that have been successfully applied in various fields of applied sciences, including machine learning. It is motivated and justified by the robustness and the good performance of DC programming and DCA in comparison with the existing methods. This thesis is devised in three parties. The first part, entitling Methodology, serves as a reference for other chapters. The first chapter concerns the programming of DC and DCA while the second chapter describes the genetic algorithms. In the second part, we develop the DC and DCA programming to solve two classes of problems in Data Mining. In the chapter four, we take consideration into the model of classification FCM and develop the programming DC and DCA for their resolution. Many formulations DC in correspondence to different decompositions DC are proposed. Our work in hierarchic classification (chapter 5) is motivated by one of its interesting and very important applications, known as muliticast communication. It's a non-convex, non differentiable, non-convex problem in a very big dimension with which we have reformulated in the forms of 3 different DC programs and developed the DCA relative. The 3rd part focuses on the Cryptology. The 1st chapter is the construction of stable boonlean functions with high degree of non-linearity - one of the crucial problems of Cryptography. Many versions of combination of 2 approaches, DCA and Genetic Algorithms (GA) are studied in the purpose of exploiting simultaneously the efficacy of each approach. The secondrd work is about the techinics of cryptanalyse of a identification scheme based on two problems Perceptron (PP) and Perceptron Permuted. We propose a method of resolving two problems PP and PPA by DCA and a cutting plan method in the last chapter
|
2 |
Approches locales et globales basées sur la programmation DC et DCA pour des problèmes combinatoires en variables mixtes 0-1 : applications à la planification opérationnelle / Local and global approaches based on DC programming and DCA for mixed 0-1 combinatorial problems : applications to operational planningNguyen Quang, Thuan 10 November 2010 (has links)
Cette thèse développe les deux approches locales et globales basées sur la programmation DC et DCA pour l'optimisation combinatoire en variables mixtes 0-1 et leurs applications à la résolution de nombreux problèmes en planification opérationnelle. Plus particulièrement, cette thèse adresse à: l'amélioration de l'algorithme d'approximation extérieure basée sur DCA (appelé DCACUT) introduit par Nguyen V.V. et Le Thi pour la programmation linéaire en variables mixtes 0-1, les combinaisons des algorithmes globaux et DCA et l'étude numérique comparative de ces approches pour la programmation linéaire en variables mixtes 0-1, l'utilisation de DCA à la résolution de la programmation DC en variables mixtes 0-1 en utilisant la pénalité exacte, la mise en œuvre des algorithmes développés à la résolution des problèmes de grande taille en planification opérationnelle comme les problèmes dans le réseau de télécommunication sans fils, les problèmes d’ordonnancement ainsi que le problème d'affectation de tâches des véhicules aériens non pilotés ou bien le problème des tournées de véhicules dans une chaîne d'approvisionnement / This thesis develops two local and global approaches based on DC programming and DCA for mixed 0-1 combinatorial optimization and their applications to many problems in operational planning. More particularly, this thesis consists of: the improvement of the outer approximation algorithm based on DCA (called DCACUT) introduced by Nguyen V.V and Le Thi for mixed 0-1 linear programming, the combinations of global algorithms and DCA and the comparative numerical study of these approaches for mixed 0-1 linear programming, the use of DCA for solving mixed 0-1 programming via an exact penalty technique, the implementation of the algorithms developed for solving large scale problems in operational planning: two problems in wireless telecommunication network, two scheduling problems, an UAV task assignment problem and an inventory routing problem in supply chains
|
3 |
Optimisation non convexe en finance et en gestion de production : modèles et méthodes / Non convex optimization in finance and in production management : models and methodsTran, Duc Quynh 14 October 2011 (has links)
Cette thèse porte sur la recherche des techniques d’optimisation pour la résolution de certains problèmes importants en deux domaines : gestion de production. Il s’agit des problèmes d’optimisation non convexe de grande dimension. Notre travail est basé sur la programmation DC (Différence de fonctions convexes), DCA (DC algorithmes), la méthode par séparation et évaluation (SE). Cette démarche est motivée par la robustesse et la performance DC et DCA comparée aux autres méthodes. La thèse comprend trois parties : dans la première partie, nous présentons les outils fondamentaux et les techniques essentielles en programmation DC, DCA ainsi que les méthodes par séparation et évaluation. La deuxième partie concerne les problèmes d’optimisation non convexes en gestion de portefeuille. Nous avons étudié deux problèmes : problème min max continu en gestion de portefeuille en présence des contraintes de cardinalité ; une classe des problèmes d’optimisation à deux niveaux et son application en sélection de portefeuille. La troisième partie est consacrée à la recherche sur les problèmes d’optimisation non convexe en gestion de production. Trois problèmes ont été étudiés : minimisation du coût de maintenance comprenant le temps de séjour et la pénalité du retard ; minimisation du coût d’un système de production/stockage multi-étapes en présence de goulot d’étrangement. Détermination des prix de transfert et les politiques de stockage pour une chaîne d’approvisionnement de deux entreprises / This thesis deals with optimization techniques for solving some optimization problems in two domains : portfolio selection and production management. They are large scale non convex optimization problems due to integer variables and/or the non convexity of the objective function. Our approach is based on DC programming and DCA, DC relaxation techniques and the algorithm Branch and Bound. This work is motivated by the robustness and the performance of the DC programming and DCA compared to other methods. The thesis includes three parts : In the first part, we present the fundamental tools and the essential techniques in DC programming, DCA as well as the method Branch and Bound. The second one concerns some non convex optimization problem in portfolio selection. Two following problems are considered : Min max continuous problem with the cardinality constraints in portfolio selection ; A class of bilevel programming problems and its application in portfolio selection. The third part contains some non convex optimization problems in production management. We study three problems : Minimization of the maintenance cost involving the flow time and the tardiness penalty ; Minimization of the cost of multi-stages production/inventory systems with bottleneck ; Determination of transfer prices and inventory policy in supply chain of two enterprises
|
4 |
La programmation DC et DCA en analyse d'image : acquisition comprimée, segmentation et restauration / DC programming and DCA in image processing : compressed sensing, segmentation and restorationNguyen, Thi Bich Thuy 11 December 2014 (has links)
L’image est une des informations les plus importantes dans la vie. Avec le développement rapide des dispositifs d’acquisition d’images numériques par exemple les appareils photo numériques, les caméras de téléphones, les appareils d’imagerie médicale ou les dispositifs d’imagerie satellite..., les besoins de traitement et d’analyse des images sont de plus en plus croissants. Ils concernent les problèmes de l’acquisition, du stockage des images, de l’amélioration ou de l’information d’extraction d’une image,... Dans cette thèse, nous étudions le traitement et l’analyse des problèmes: acquisition comprimée, apprentissage de dictionnaire et débruitage d’images, segmentation d’images. La méthode que nous décrivons se base sur les approches d’optimisation déterministe, nommées la programmation DC (Difference of Convex functions) et DCA (Difference of Convex Algorithms), pour la résolution des problèmes d’analyse d’images cités précédemment. 1. Acquisition comprimée: une technique de traitement du signal pour acquérir et reconstruire un signal respectant les limites traditionnelles du théorème d’échantillonnage de Nyquist–Shannon, en trouvant la solution la plus parcimonieuse d’un système linéaire sous-déterminé. Cette méthode apporte la parcimonie ou la compressibilité du signal lorsqu’il est représenté dans une base ou un dictionnaire approprié qui permet au signal entier d’être déterminé à partir de certains mesures relatives. Dans cette thématique, nous nous intéressons à deux problèmes. Le premier est de trouver la représentation parcimonieuse d’un signal. Le second est la récupération du signal à partir de ses mesures compressées sur une base incohérente ou un dictionnaire. Les deux problèmes ci-dessus conduisent à résoudre un problème d’optimisation non convexe. Nous étudions trois modèles avec quatre approximations pour ces problèmes. Des algorithmes appropriés basés sur la programmation DC et DCA sont présentés. 2. Apprentissage du dictionnaire: Nous avons vu la puissance et les avantages de la représentation parcimonieuse des signaux dans l’acquisition comprimée. La représentation parcimonieuse d’un signal entier dépend non seulement des algorithmes de représentation mais aussi de la base ou du dictionnaire qui sont utilisés dans la représentation. Ainsi conduit un problème critique et les autres applications d’une manière naturelle. Au lieu d’utiliser une base fixe, comme wavelets (ondelettes) ou Fourier, on peut apprendre un dictionnaire, la matrice D, pour optimiser la représentation parcimonieuse d’une large classe de signaux donnés. La matrice D est appelée le dictionnaire appris. Pour ce problème, nous avons proposé un algorithme efficace basé sur DCA qui comprend deux étapes: la première étape - codage parcimonieux; le seconde étape - dictionnaire mis à jour. Une application de ce problème, débruitage d’images, est également considérée. 3. Segmentation d’images: il s’agit de partitionner une image numérique en segments multiples (ensembles des pixels). Le but de la segmentation est de simplifier et/ou de modifier la représentation d’une image en une forme qui est plus significative et plus facile à analyser. Nous avons développé une méthode efficace pour la segmentation d’images via le clustering flou avec la pondération de variables. Nous étudions également une application médicale qui est le problème de comptage de cellules. Nous proposons une combinaison de phase de segmentation et des opérations morphologiques pour compter automatiquement le nombre de cellules. Notre approche donne des résultats prometteurs dans la comparaison avec l’analyse manuelle traditionnelle en dépit de la densité cellulaire très élevée / Image is one of the most important information in our lives. Along with the rapid development of digital image acquisition devices such as digital cameras, phone cameras, the medical imaging devices or the satellite imaging devices..., the needs of processing and analyzing images is more and more demanding. It concerns with the problem of image acquiring, storing, enhancing or extracting information from an image,... In this thesis, we are considering the image processing and analyzing problems including: compressed sensing, dictionary learning and image denoising, and image segmentation. Our method is based on deterministic optimization approach, named the DC (Difference of Convex) programming and DCA (Difference of Convex Algorithms) for solving some classes of image analysis addressed above. 1. Compressed sensing is a signal processing technique for efficiently acquiring and reconstructing a signal, which is breaking the traditional limits of sampling theory of Nyquist–Shannon by finding solutions to underdetermined linear systems. This takes advantage of the signal’s sparseness or compressibility when it is represented in a suitable basis or dictionary, which allows the entire signal to be determined from few relative measurements. In this problem, we are interested in two aspects phases. The first one is finding the sparse representation of a signal. The other one is recovering the signal from its compressed measurements on an incoherent basis or dictionary. These problems lead to solve a NP–hard nonconvex optimization problem. We investigated three models with four approximations for each model. Appropriate algorithms based on DC programming and DCA are presented. 2. Dictionary learning: we have seen the power and the advantages of the sparse representation of signals in compressed sensing. Finding out the sparsest representation of a set of signals depends not only on the sparse representation algorithms but also on the basis or the dictionary used to represent them. This leads to the critical problems and other applications in a natural way. Instead of using a fixed basis such as wavelets or Fourier, one can learn the dictionary, a matrix D, to optimize the sparsity of the representation for a large class of given signals (data). The matrix D is called the learned dictionary. For this problem, we proposed an efficient DCA based algorithm including two stages: sparse coding and dictionary updating. An application of this problem, image denoising, is also considered. 3. Image segmentation: partitioning a digital image into multiple segments (sets of pixels). The goal of segmentation is to simplify and/or change the representation of an image into a form that is more meaningful and easier to analyze. We have developed an efficient method for image segmentation via feature weighted fuzzy clustering model. We also study an application of image segmentation for cell counting problem in medicine. We propose a combination of segmentation phase and morphological operations to automatically count the number of cells. Our approach gives promising results in comparison with the traditional manual analysis in despite of the very high cell density
|
5 |
La programmation DC et DCA pour certaines classes de problèmes dans les systèmes de communication sans fil / DC programming and DCA for some classes of problems in Wireless Communication SystemsTran, Thi Thuy 24 April 2017 (has links)
La communication sans fil joue un rôle de plus en plus important dans de nombreux domaines. Un grand nombre d'applications sont exploitées tels que l'e-banking, l'e-commerce, les services médicaux,….Ainsi, la qualité de service (QoS), et la confidentialité d'information sur le réseau sans fil sont primordiales dans la conception du réseau sans fil. Dans le cadre de cette thèse, nous nous concentrons sur le développement des approches d'optimisation pour résoudre certains problèmes concernant les deux sujets suivants : la qualité de service et la sécurité de la couche physique. Nos méthodes sont basées sur la programmation DC (Difference of convex functions) et DCA (DC Algorithms) qui sont reconnues comme de puissants outils d'optimisation non convexes et non différentiables. Ces outils ont connu de grands succès au cours des deux dernières décennies dans la modélisation et la résolution de nombreux problèmes d'applications dans divers domaines de sciences appliquées. Outre les chapitres d'introduction et de conclusion, le contenu principal de cette thèse est divisé en quatre chapitres: Le chapitre 2 concerne la QoS dans les réseaux sans fil tandis que les trois chapitres suivants étudient la sécurité de la couche physique. Le chapitre 2 considère un critère de QoS qui consiste à assurer un service équitable entre les utilisateurs dans un réseau sans fil. Plus précisement, on doit s'assurer qu'aucun utilisateur ne souffre d'un mauvais rapport signal sur bruit (“signal to noise ratio (SNR)" en anglais). Le problème revient à maximiser le plus petit SNR. Il s'agit donc un problème d'optimisation DC général (minimisation d'une fonction DC sur un ensemble défini par des contraintes convexes et des contraintes DC). La programmation DC et DCA ont été développés pour résoudre ce problème. Tenant compte de la structure spécifique du problème, nous avons proposé une nouvelle décomposition DC qui était plus efficace que la précédente décomposition. Une méthode de résolution basée sur la programmation DC et DCA a été développée. De plus, nous avons prouvé la convergence de notre algorithme. L'objectif commun des trois chapitres suivants (Chapitre 3, 4, 5) est de garantir la sécurité de la couche physique d'un système de communication sans fil. Nous nous concentrons sur l'approche qui consiste à maximiser le taux de secret (“secrecy rate” en anglais). Trois diverses architectures du réseau sans fil utilisant différentes techniques coopératives pour la transmission sont considérées dans ces trois chapitres. Dans le chapitre 3, nous considérons un réseau point-à-point utilisant une technique coopérative de brouillage. Le chapitre 4 étudie un réseau de relais utilisant une combinaison de technique de formation de faisceau ("beamforming technique" en anglais) et de technique de relais coopératifs. Deux protocoles de technique de relais coopératifs, Amplifier-et-Transmettre (“Amplify-and-Forward (AF)'') et Décoder-et-Transmettre (“Decode-and-Forward (DF)'' en anglais), sont considérés. Dans le chapitre 3 et le chapitre 4, nous considérons qu'il y a seulement un espion (“eavesdropper" en anglais) dans le réseau tandis que le chapitre 5 est une extension du chapitre 4 où on peut avoir plusieurs espions. Tous ces problèmes sont des problèmes d'optimisation non-convexes qui peuvent être ensuite reformulés sous forme d'une programmation DC pour lesquels nous développons les méthodes efficaces et robustes basées sur la programmation DC et DCA. Dans les chapitres 3 et 4, nous reformulons les problèmes étudiés sous forme d'un programme DC standard (minimisation d'une fonction DC avec les contraintes convexes). La structure spécifique est bien exploitée afin de concevoir des schémas DCA standard efficaces où les sous-problèmes convexes de ces schémas sont résolus soit explicitement soit de manière peu coûteuse. Les problèmes d'optimisation dans le chapitre 5 sont reformulés comme les programmes DC généraux et les schémas [...] / Wireless communication plays an increasingly important role in many aspects of life. A lot of applications of wireless communication are exploited to serve people's life such as e-banking, e-commerce and medical service. Therefore, quality of service (QoS) as well as confidentiality and privacy of information over the wireless network are of leading interests in wireless network designs. In this dissertation, we focus on developing optimization techniques to address some problems in two topics: QoS and physical layer security. Our methods are relied on DC (Difference of Convex functions) programming and DCA (DC Algorithms) which are powerful, non-differentiable, non-convex optimization tools that have enjoyed great success over the last two decades in modelling and solving many application problems in various fields of applied science. Besides the introduction and conclusion chapters, the main content of the dissertation is divided into four chapters: the chapter 2 concerns QoS in wireless networks whereas the next three chapters tackle physical layer security. The chapter 2 discusses a criterion of QoS assessed by the minimum of signal-to-noise (SNR) ratios at receivers. The objective is to maximize the minimum SNR in order to ensure the fairness among users, avoid the case in which some users have to suffer from a very low SNR. We apply DC programming and DCA to solve the derived max-min fairness optimization problem. With the awareness that the efficiency of DCA heavily depends on the corresponding DC decomposition, we recast the considered problem as a general DC program (minimization of a DC function on a set defined by some convex constraints and some DC constraints) using a DC decomposition different from the existing one and design a general DCA scheme to handle that problem. The numerical results reveal the efficiency of our proposed DCA compared with the existing DCA and the other methods. In addition, we rigorously prove the convergence of the proposed general DCA scheme. The common objective of the next three chapters (Chapter 3,4,5) is to guarantee security at the physical layer of wireless communication systems based on maximizing their secrecy rate. Three different architectures of the wireless system using various cooperative techniques are considered in these three chapters. More specifically, a point-to-point wireless system including single eavesdropper and employing cooperative jamming technique is considered in the chapter 3. Chapter 4 is about a relay wireless system including single eavesdropper and using a combination of beamforming technique and cooperative relaying technique with two relaying protocols Amplify-and-Forward (AF) and Decode-and-Forward (DF). Chapter 5 concerns a more general relay wireless system than the chapter 4, in which multiple eavesdroppers are considered instead of single eavesdropper. The difference in architecture of wireless systems as well as in the utilized cooperative techniques result in three mathematically different optimization problems. The unified approach based on DC programming and DCA is proposed to deal with these problems. The special structures of the derived optimization problems in the chapter 3 and the chapter 4 are exploited and explored to design efficient standard DCA schemes in the sense that the convex subproblems in these schemes are solved either explicitly or in an inexpensive way. The max-min forms of the optimization problems in the chapter 5 are reformulated as the general DC programs with DC constraints and the general DCA schemes are developed to address these problems. The results obtained by DCA show the efficiency of our approach in comparison with the existing methods. The convergence of the proposed general DCA schemes is thoroughly shown
|
6 |
Techniques d'optimisation déterministe et stochastique pour la résolution de problèmes difficiles en cryptologieBouallagui, Sarra 05 July 2010 (has links) (PDF)
Cette thèse s'articule autour des fonctions booléennes liées à la cryptographie et la cryptanalyse de certains schémas d'identification. Les fonctions booléennes possèdent des propriétés algébriques fréquemment utilisées en cryptographie pour constituer des S-Boxes (tables de substitution).Nous nous intéressons, en particulier, à la construction de deux types de fonctions : les fonctions courbes et les fonctions équilibrées de haut degré de non-linéarité.Concernant la cryptanalyse, nous nous focalisons sur les techniques d'identification basées sur les problèmes de perceptron et de perceptron permuté. Nous réalisons une nouvelle attaque sur le schéma afin de décider de sa faisabilité.Nous développons ici des nouvelles méthodes combinant l'approche déterministe DCA (Difference of Convex functions Algorithm) et heuristique (recuit simulé, entropie croisée, algorithmes génétiques...). Cette approche hybride, utilisée dans toute cette thèse, est motivée par les résultats intéressants de la programmation DC.
|
7 |
Approches basées sur DCA pour la programmation mathématique avec des contraintes d'équilibre / DCA based Approaches for Mathematical Programs with Equilibrium ConstraintsNguyen, Thi Minh Tam 10 September 2018 (has links)
Dans cette thèse, nous étudions des approches basées sur la programmation DC (Difference of Convex functions) et DCA (DC Algorithm) pour la programmation mathématique avec des contraintes d'équilibre, notée MPEC (Mathematical Programming with Equilibrum Constraints en anglais). Etant un sujet classique et difficile de la programmation mathématique et de la recherche opérationnelle, et de par ses diverses applications importantes, MPEC a attiré l'attention de nombreux chercheurs depuis plusieurs années. La thèse se compose de quatre chapitres principaux. Le chapitre 2 étudie une classe de programmes mathématiques avec des contraintes de complémentarité linéaire. En utilisant quatre fonctions de pénalité, nous reformulons le problème considéré comme des problèmes DC standard, i.e minimisation d'une fonction DC sous les contraintes convexes. Nous développons ensuite des algorithmes appropriés basés sur DCA pour résoudre les problèmes DC résultants. Deux d'entre eux sont reformulés encore sous la forme des problèmes DC généraux (i.e. minimisation d'une fonction DC sous des contraintes DC) pour que les sous-problèmes convexes dans DCA soient plus faciles à résoudre. Après la conception de DCA pour le problème considéré, nous développons ces schémas DCA pour deux cas particuliers: la programmation quadratique avec des contraintes de complémentarité linéaire, et le problème de complémentarité aux valeurs propres. Le chapitre 3 aborde une classe de programmes mathématiques avec des contraintes d'inégalité variationnelle. Nous utilisons une technique de pénalisation pour reformuler le problème considéré comme un programme DC. Une variante de DCA et sa version accélérée sont proposées pour résoudre ce programme DC. Comme application, nous résolvons le problème de détermination du prix de péages dans un réseau de transport avec des demandes fixes (" the second-best toll pricing problem with fixed demands" en anglais). Le chapitre 4 se concentre sur une classe de problèmes d'optimisation à deux niveaux avec des variables binaires dans le niveau supérieur. En utilisant une fonction de pénalité exacte, nous reformulons le problème considéré comme un programme DC standard pour lequel nous développons un algorithme efficace basé sur DCA. Nous appliquons l'algorithme proposé pour résoudre le problème d'interdiction de flot maximum dans un réseau ("maximum flow network interdiction problem" en anglais). Dans le chapitre 5, nous nous intéressons au problème de conception de réseau d'équilibre continu ("continuous equilibrium network design problem" en anglais). Il est modélisé sous forme d'un programme mathématique avec des contraintes de complémentarité, brièvement nommé MPCC (Mathematical Program with Complementarity Constraints en anglais). Nous reformulons ce problème MPCC comme un programme DC général et proposons un schéma DCA approprié pour le problème résultant / In this dissertation, we investigate approaches based on DC (Difference of Convex functions) programming and DCA (DC Algorithm) for mathematical programs with equilibrium constraints. Being a classical and challenging topic of nonconvex optimization, and because of its many important applications, mathematical programming with equilibrium constraints has attracted the attention of many researchers since many years. The dissertation consists of four main chapters. Chapter 2 studies a class of mathematical programs with linear complementarity constraints. By using four penalty functions, we reformulate the considered problem as standard DC programs, i.e. minimizing a DC function on a convex set. The appropriate DCA schemes are developed to solve these four DC programs. Two among them are reformulated again as general DC programs (i.e. minimizing a DC function under DC constraints) in order that the convex subproblems in DCA are easier to solve. After designing DCA for the considered problem, we show how to develop these DCA schemes for solving the quadratic problem with linear complementarity constraints and the asymmetric eigenvalue complementarity problem. Chapter 3 addresses a class of mathematical programs with variational inequality constraints. We use a penalty technique to recast the considered problem as a DC program. A variant of DCA and its accelerated version are proposed to solve this DC program. As an application, we tackle the second-best toll pricing problem with fixed demands. Chapter 4 focuses on a class of bilevel optimization problems with binary upper level variables. By using an exact penalty function, we express the bilevel problem as a standard DC program for which an efficient DCA scheme is developed. We apply the proposed algorithm to solve a maximum flow network interdiction problem. In chapter 5, we are interested in the continuous equilibrium network design problem. It was formulated as a Mathematical Program with Complementarity Constraints (MPCC). We reformulate this MPCC problem as a general DC program and then propose a suitable DCA scheme for the resulting problem
|
8 |
Approches de la programmation DC et DCA en data mining : modélisation parcimonieuse de données.Thiao, Mamadou 28 October 2011 (has links) (PDF)
Nous abordons dans cette thèse les approches de la Programmation DC et DCAen Data Mining (fouille de données). Plus particulièrement, nous nous intéressons aux problèmes de parcimonie en modélisation parcimonieuse de données. Le travail porte sur des recherches théoriques et algorithmiques et la principale approche utilisée est la programmation DC et DCA.Nous avons établi des propriétés intéressantes, des reformulations DC, voire quadratiques,équivalentes pour ces problèmes grâce à de nouvelles techniques de pénalité exacte développées durant cette thèse. Ces résultats donnent une nouvelle facette et une nouvelle manière de voir ces problèmes de parcimonie afin de permettre une meilleure compréhension et prise en main de ces problèmes. Ces nouvelles techniques ont été appliquées dans le cadre de la modélisation parcimonieuse pour le problème de la valeur propre maximale et dans le cadre de la modélisation parcimonieuse dans les modèles de régression linéaire.La structure simple des reformulations obtenues se prête bien à la programmation DC et DCA pour la résolution. Les simulations numériques, obtenues avec DCA et un algorithme combiné DCA et la procédure Séparation et Evaluation pour l'optimisation globale, sont très intéressantes et très prometteuses et illustrent bien le potentiel de cette nouvelle approche.
|
9 |
Programmation DC et DCA en optimisation combinatoire et optimisation polynomiale via les techniques de SDP : codes et simulations numériquesNiu, Yi Shuai 28 May 2010 (has links) (PDF)
L'objectif de cette thèse porte sur des recherches théoriques et algorithmiques d'optimisation locale et globale via les techniques de programmation DC & DCA, Séparation et Evaluation (SE) ainsi que les techniques de relaxation DC/SDP, pour résoudre plusieurs types de problèmes d'optimisation non convexe (notamment en Optimisation Combinatoire et Optimisation Polynomiale). La thèse comporte quatre parties :La première partie présente les outils fondamentaux et les techniques essentielles en programmation DC & l'Algorithme DC (DCA), ainsi que les techniques de relaxation SDP, et les méthodes de séparation et évaluation (SE).Dans la deuxième partie, nous nous intéressons à la résolution de problèmes de programmation quadratique et linéaire mixte en variables entières. Nous proposons de nouvelles approches locales et globales basées sur DCA, SE et SDP. L'implémentation de logiciel et des simulations numériques sont aussi étudiées.La troisième partie explore des approches de la programmation DC & DCA en les combinant aux techniques SE et SDP pour la résolution locale et globale de programmes polynomiaux. Le programme polynomial avec des fonctions polynomiales homogènes et son application à la gestion de portefeuille avec moments d'ordre supérieur en optimisation financière ont été discutés de manière approfondie dans cette partie.Enfin, nous étudions dans la dernière partie un programme d'optimisation sous contraintes de type matrices semi-définies via nos approches de la programmation DC. Nous nous consacrons à la résolution du problème de réalisabilité des contraintes BMI et QMI en contrôle optimal.L'ensemble de ces travaux a été implémenté avec MATLAB, C/C++ ... nous permettant de confirmer l'utilisation pratique et d'enrichir nos travaux de recherche.
|
10 |
Techniques d'optimisation déterministe et stochastique pour la résolution de problèmes difficiles en cryptologie / Deterministic and stochastic optimization techniques for hard problems in cryptologyBouallagui, Sarra 05 July 2010 (has links)
Cette thèse s'articule autour des fonctions booléennes liées à la cryptographie et la cryptanalyse de certains schémas d'identification. Les fonctions booléennes possèdent des propriétés algébriques fréquemment utilisées en cryptographie pour constituer des S-Boxes (tables de substitution).Nous nous intéressons, en particulier, à la construction de deux types de fonctions : les fonctions courbes et les fonctions équilibrées de haut degré de non-linéarité.Concernant la cryptanalyse, nous nous focalisons sur les techniques d'identification basées sur les problèmes de perceptron et de perceptron permuté. Nous réalisons une nouvelle attaque sur le schéma afin de décider de sa faisabilité.Nous développons ici des nouvelles méthodes combinant l'approche déterministe DCA (Difference of Convex functions Algorithm) et heuristique (recuit simulé, entropie croisée, algorithmes génétiques...). Cette approche hybride, utilisée dans toute cette thèse, est motivée par les résultats intéressants de la programmation DC. / In cryptography especially in block cipher design, boolean functions are the basic elements.A cryptographic function should have high non-linearity as it can be attacked by linear method. There are three goals for the research presented in this thesis :_ Finding a new construction algorithm for the highest possible nonlinear boolean functions in the even dimension, that is bent functions, based on a detreministic model._ Finding highly non linear boolean functions._ Cryptanalysing an identification scheme based on the perceptron problem.Optimisation heuristic algorithms (Genetic algorithm and simulated annealing) and a deterministicone based on DC programming (DCA) were used together.
|
Page generated in 0.0988 seconds