• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Approches basées sur DCA pour la programmation mathématique avec des contraintes d'équilibre / DCA based Approaches for Mathematical Programs with Equilibrium Constraints

Nguyen, Thi Minh Tam 10 September 2018 (has links)
Dans cette thèse, nous étudions des approches basées sur la programmation DC (Difference of Convex functions) et DCA (DC Algorithm) pour la programmation mathématique avec des contraintes d'équilibre, notée MPEC (Mathematical Programming with Equilibrum Constraints en anglais). Etant un sujet classique et difficile de la programmation mathématique et de la recherche opérationnelle, et de par ses diverses applications importantes, MPEC a attiré l'attention de nombreux chercheurs depuis plusieurs années. La thèse se compose de quatre chapitres principaux. Le chapitre 2 étudie une classe de programmes mathématiques avec des contraintes de complémentarité linéaire. En utilisant quatre fonctions de pénalité, nous reformulons le problème considéré comme des problèmes DC standard, i.e minimisation d'une fonction DC sous les contraintes convexes. Nous développons ensuite des algorithmes appropriés basés sur DCA pour résoudre les problèmes DC résultants. Deux d'entre eux sont reformulés encore sous la forme des problèmes DC généraux (i.e. minimisation d'une fonction DC sous des contraintes DC) pour que les sous-problèmes convexes dans DCA soient plus faciles à résoudre. Après la conception de DCA pour le problème considéré, nous développons ces schémas DCA pour deux cas particuliers: la programmation quadratique avec des contraintes de complémentarité linéaire, et le problème de complémentarité aux valeurs propres. Le chapitre 3 aborde une classe de programmes mathématiques avec des contraintes d'inégalité variationnelle. Nous utilisons une technique de pénalisation pour reformuler le problème considéré comme un programme DC. Une variante de DCA et sa version accélérée sont proposées pour résoudre ce programme DC. Comme application, nous résolvons le problème de détermination du prix de péages dans un réseau de transport avec des demandes fixes (" the second-best toll pricing problem with fixed demands" en anglais). Le chapitre 4 se concentre sur une classe de problèmes d'optimisation à deux niveaux avec des variables binaires dans le niveau supérieur. En utilisant une fonction de pénalité exacte, nous reformulons le problème considéré comme un programme DC standard pour lequel nous développons un algorithme efficace basé sur DCA. Nous appliquons l'algorithme proposé pour résoudre le problème d'interdiction de flot maximum dans un réseau ("maximum flow network interdiction problem" en anglais). Dans le chapitre 5, nous nous intéressons au problème de conception de réseau d'équilibre continu ("continuous equilibrium network design problem" en anglais). Il est modélisé sous forme d'un programme mathématique avec des contraintes de complémentarité, brièvement nommé MPCC (Mathematical Program with Complementarity Constraints en anglais). Nous reformulons ce problème MPCC comme un programme DC général et proposons un schéma DCA approprié pour le problème résultant / In this dissertation, we investigate approaches based on DC (Difference of Convex functions) programming and DCA (DC Algorithm) for mathematical programs with equilibrium constraints. Being a classical and challenging topic of nonconvex optimization, and because of its many important applications, mathematical programming with equilibrium constraints has attracted the attention of many researchers since many years. The dissertation consists of four main chapters. Chapter 2 studies a class of mathematical programs with linear complementarity constraints. By using four penalty functions, we reformulate the considered problem as standard DC programs, i.e. minimizing a DC function on a convex set. The appropriate DCA schemes are developed to solve these four DC programs. Two among them are reformulated again as general DC programs (i.e. minimizing a DC function under DC constraints) in order that the convex subproblems in DCA are easier to solve. After designing DCA for the considered problem, we show how to develop these DCA schemes for solving the quadratic problem with linear complementarity constraints and the asymmetric eigenvalue complementarity problem. Chapter 3 addresses a class of mathematical programs with variational inequality constraints. We use a penalty technique to recast the considered problem as a DC program. A variant of DCA and its accelerated version are proposed to solve this DC program. As an application, we tackle the second-best toll pricing problem with fixed demands. Chapter 4 focuses on a class of bilevel optimization problems with binary upper level variables. By using an exact penalty function, we express the bilevel problem as a standard DC program for which an efficient DCA scheme is developed. We apply the proposed algorithm to solve a maximum flow network interdiction problem. In chapter 5, we are interested in the continuous equilibrium network design problem. It was formulated as a Mathematical Program with Complementarity Constraints (MPCC). We reformulate this MPCC problem as a general DC program and then propose a suitable DCA scheme for the resulting problem
2

Finite element simulation of non-Newtonian flow in the converging section of an extrusion die using a penalty function technique

Ghosh, Jayanto K. January 1989 (has links)
No description available.
3

Programmation DC et DCA pour l'optimisation non convexe/optimisation globale en variables mixtes entières : Codes et Applications / DC programming and DCA for nonconvex optimization/ global optimization in mixed integer programming : Codes and applications

Pham, Viet Nga 18 April 2013 (has links)
Basés sur les outils théoriques et algorithmiques de la programmation DC et DCA, les travaux de recherche dans cette thèse portent sur les approches locales et globales pour l'optimisation non convexe et l'optimisation globale en variables mixtes entières. La thèse comporte 5 chapitres. Le premier chapitre présente les fondements de la programmation DC et DCA, et techniques de Séparation et Evaluation (B&B) (utilisant la technique de relaxation DC pour le calcul des bornes inférieures de la valeur optimale) pour l'optimisation globale. Y figure aussi des résultats concernant la pénalisation exacte pour la programmation en variables mixtes entières. Le deuxième chapitre est consacré au développement d'une méthode DCA pour la résolution d'une classe NP-difficile des programmes non convexes non linéaires en variables mixtes entières. Ces problèmes d'optimisation non convexe sont tout d'abord reformulées comme des programmes DC via les techniques de pénalisation en programmation DC de manière que les programmes DC résultants soient efficacement résolus par DCA et B&B bien adaptés. Comme première application en optimisation financière, nous avons modélisé le problème de gestion de portefeuille sous le coût de transaction concave et appliqué DCA et B&B à sa résolution. Dans le chapitre suivant nous étudions la modélisation du problème de minimisation du coût de transaction non convexe discontinu en gestion de portefeuille sous deux formes : la première est un programme DC obtenu en approximant la fonction objectif du problème original par une fonction DC polyèdrale et la deuxième est un programme DC mixte 0-1 équivalent. Et nous présentons DCA, B&B, et l'algorithme combiné DCA-B&B pour leur résolution. Le chapitre 4 étudie la résolution exacte du problème multi-objectif en variables mixtes binaires et présente deux applications concrètes de la méthode proposée. Nous nous intéressons dans le dernier chapitre à ces deux problématiques challenging : le problème de moindres carrés linéaires en variables entières bornées et celui de factorisation en matrices non négatives (Nonnegative Matrix Factorization (NMF)). La méthode NMF est particulièrement importante de par ses nombreuses et diverses applications tandis que les applications importantes du premier se trouvent en télécommunication. Les simulations numériques montrent la robustesse, rapidité (donc scalabilité), performance et la globalité de DCA par rapport aux méthodes existantes. / Based on theoretical and algorithmic tools of DC programming and DCA, the research in this thesis focus on the local and global approaches for non convex optimization and global mixed integer optimization. The thesis consists of 5 chapters. The first chapter presents fundamentals of DC programming and DCA, and techniques of Branch and Bound method (B&B) for global optimization (using the DC relaxation technique for calculating lower bounds of the optimal value). It shall include results concerning the exact penalty technique in mixed integer programming. The second chapter is devoted of a DCA method for solving a class of NP-hard nonconvex nonlinear mixed integer programs. These nonconvex problems are firstly reformulated as DC programs via penalty techniques in DC programming so that the resulting DC programs are effectively solved by DCA and B&B well adapted. As a first application in financial optimization, we modeled the problem pf portfolio selection under concave transaction costs and applied DCA and B&B to its solutions. In the next chapter we study the modeling of the problem of minimization of nonconvex discontinuous transaction costs in portfolio selection in two forms: the first is a DC program obtained by approximating the objective function of the original problem by a DC polyhedral function and the second is an equivalent mixed 0-1 DC program. And we present DCA, B&B algorithm, and a combined DCA-B&B algorithm for their solutions. Chapter 4 studied the exact solution for the multi-objective mixed zero-one linear programming problem and presents two practical applications of proposed method. We are interested int the last chapter two challenging problems: the linear integer least squares problem and the Nonnegative Mattrix Factorization problem (NMF). The NMF method is particularly important because of its many various applications of the first are in telecommunications. The numerical simulations show the robustness, speed (thus scalability), performance, and the globality of DCA in comparison to existent methods.

Page generated in 0.072 seconds