Return to search

Programmation DC et DCA en optimisation combinatoire et optimisation polynomiale via les techniques de SDP : codes et simulations numériques

L'objectif de cette thèse porte sur des recherches théoriques et algorithmiques d'optimisation locale et globale via les techniques de programmation DC & DCA, Séparation et Evaluation (SE) ainsi que les techniques de relaxation DC/SDP, pour résoudre plusieurs types de problèmes d'optimisation non convexe (notamment en Optimisation Combinatoire et Optimisation Polynomiale). La thèse comporte quatre parties :La première partie présente les outils fondamentaux et les techniques essentielles en programmation DC & l'Algorithme DC (DCA), ainsi que les techniques de relaxation SDP, et les méthodes de séparation et évaluation (SE).Dans la deuxième partie, nous nous intéressons à la résolution de problèmes de programmation quadratique et linéaire mixte en variables entières. Nous proposons de nouvelles approches locales et globales basées sur DCA, SE et SDP. L'implémentation de logiciel et des simulations numériques sont aussi étudiées.La troisième partie explore des approches de la programmation DC & DCA en les combinant aux techniques SE et SDP pour la résolution locale et globale de programmes polynomiaux. Le programme polynomial avec des fonctions polynomiales homogènes et son application à la gestion de portefeuille avec moments d'ordre supérieur en optimisation financière ont été discutés de manière approfondie dans cette partie.Enfin, nous étudions dans la dernière partie un programme d'optimisation sous contraintes de type matrices semi-définies via nos approches de la programmation DC. Nous nous consacrons à la résolution du problème de réalisabilité des contraintes BMI et QMI en contrôle optimal.L'ensemble de ces travaux a été implémenté avec MATLAB, C/C++ ... nous permettant de confirmer l'utilisation pratique et d'enrichir nos travaux de recherche.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00557911
Date28 May 2010
CreatorsNiu, Yi Shuai
PublisherINSA de Rouen
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0025 seconds