Embedded memories dominate area, power and cost of modern very large scale integrated circuits system on chips ( VLSI SoCs). Furthermore, due to process variations, it becomes challenging to design reliable energy efficient systems. Therefore, fault-tolerant designs will be area efficient, cost effective and have low power consumption. The idea of this project is to design embedded memories where reliability is intentionally compromised to increase storage density. Gain cell memories are smaller than SRAM and unlike DRAM they are logic compatible. In multilevel DRAM storage density is increased by storing two bits per cell without reducing feature size. This thesis targets multilevel read and write schemes that provide short access time, small area overhead and are highly reliable. First, timing analysis of reference design is performed for read and write operation. An analytical model of write bit line (WBL) is developed to have an estimate of write delay. Replica technique is designed to generate the delay and track variations of storage array. Design of replica technique is accomplished by designing replica column, read and write control circuits. A memory controller is designed to control the read and write operation in multilevel DRAM. A multilevel DRAM is with storage capacity of eight kilobits is designed in UMC 90 nm technology. Simulations are performed for testing and results are reported for energy and access time. Monte Carlo analysis is done for variation tolerance of replica technique. Finally, multilevel DRAM with replica technique is compared with reference design to check the improvement in access times.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-71653 |
Date | January 2011 |
Creators | Khalid, Muhammad Umer |
Publisher | Linköpings universitet, Elektroniksystem |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds