In der Dissertation werden Schranken für Abschätzungen des Kommutators in verschiedenen Normen gegeben. Den Ausgangspunkt bildet die Frobenius-Norm, für die eine überraschend kleine Schranke bewiesen werden kann. Auf diesem Resultat aufbauend lassen sich über eine spezielle Adaption der Interpolationsmethode von Riesz-Thorin scharfe Schranken bei Verwendung von Schatten- und Vektornormen weitestgehend bestimmen. Es werden ferner die Fälle untersucht, in denen die obere Abschätzung erreicht wird (sog. Maximalität). Eine wichtige Rolle spielen verschiedene Darstellungen der Ungleichung, welche vielfältige Interpretationsmöglichkeiten eröffen und Verbindungen der algebraischen Abschätzung zu einem wichtigen Satz der Differentialgeometrie über die Krümmung von Mannigfaltigkeiten aufzeigen.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:ch1-qucosa-70656 |
Date | 30 July 2011 |
Creators | Wenzel, David |
Contributors | TU Chemnitz, Fakultät für Mathematik, Prof. Dr. Albrecht Böttcher, Prof. Dr. Albrecht Böttcher, Prof. Dr. Koenraad M. R. Audenaert |
Publisher | Universitätsbibliothek Chemnitz |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | deu |
Detected Language | German |
Type | doc-type:doctoralThesis |
Format | application/pdf, text/plain, application/zip |
Page generated in 0.002 seconds