Spelling suggestions: "subject:"commutator"" "subject:"kommutator""
1 |
Solitons in Bose-Einstein CondensatesSöhn, Matthias. January 2002 (has links)
Konstanz, Univ., Diplomarb., 2002.
|
2 |
Scharfe Ungleichungen für Normen von Kommutatoren endlicher MatrizenWenzel, David 30 July 2011 (has links) (PDF)
In der Dissertation werden Schranken für Abschätzungen des Kommutators in verschiedenen Normen gegeben. Den Ausgangspunkt bildet die Frobenius-Norm, für die eine überraschend kleine Schranke bewiesen werden kann. Auf diesem Resultat aufbauend lassen sich über eine spezielle Adaption der Interpolationsmethode von Riesz-Thorin scharfe Schranken bei Verwendung von Schatten- und Vektornormen weitestgehend bestimmen. Es werden ferner die Fälle untersucht, in denen die obere Abschätzung erreicht wird (sog. Maximalität). Eine wichtige Rolle spielen verschiedene Darstellungen der Ungleichung, welche vielfältige Interpretationsmöglichkeiten eröffen und Verbindungen der algebraischen Abschätzung zu einem wichtigen Satz der Differentialgeometrie über die Krümmung von Mannigfaltigkeiten aufzeigen.
|
3 |
Scharfe Ungleichungen für Normen von Kommutatoren endlicher MatrizenWenzel, David 21 March 2011 (has links)
In der Dissertation werden Schranken für Abschätzungen des Kommutators in verschiedenen Normen gegeben. Den Ausgangspunkt bildet die Frobenius-Norm, für die eine überraschend kleine Schranke bewiesen werden kann. Auf diesem Resultat aufbauend lassen sich über eine spezielle Adaption der Interpolationsmethode von Riesz-Thorin scharfe Schranken bei Verwendung von Schatten- und Vektornormen weitestgehend bestimmen. Es werden ferner die Fälle untersucht, in denen die obere Abschätzung erreicht wird (sog. Maximalität). Eine wichtige Rolle spielen verschiedene Darstellungen der Ungleichung, welche vielfältige Interpretationsmöglichkeiten eröffen und Verbindungen der algebraischen Abschätzung zu einem wichtigen Satz der Differentialgeometrie über die Krümmung von Mannigfaltigkeiten aufzeigen.
|
4 |
Local Extensions of Completely Rational Conformal Quantum Field Theories / Lokale Erweiterungen von Vollständig Rationellen Konformen QuantenfeldtheorienKukhtina, Antonia Mitkova 17 June 2011 (has links)
No description available.
|
5 |
Mathematical Foundations of Quantum Mechanics / Kvantfysikens Matematiska GrunderIsraelsson, Anders January 2013 (has links)
No description available.
|
6 |
On the length of group lawsSchneider, Jakob 07 December 2019 (has links)
Let C be the class of finite nilpotent, solvable, symmetric, simple or semi-simple groups and n be a positive integer. We discuss the following question on group laws: What is the length of the shortest non-trivial law holding for all finite groups from the class C of order less than or equal to n?:Introduction
0 Essentials from group theory
1 The two main tools
1.1 The commutator lemma
1.2 The extension lemma
2 Nilpotent and solvable groups
2.1 Definitions and basic properties
2.2 Short non-trivial words in the derived series of F_2
2.3 Short non-trivial words in the lower central series of F_2
2.4 Laws for finite nilpotent groups
2.5 Laws for finite solvable groups
3 Semi-simple groups
3.1 Definitions and basic facts
3.2 Laws for the symmetric group S_n
3.3 Laws for simple groups
3.4 Laws for finite linear groups
3.5 Returning to semi-simple groups
4 The final conclusion
Index
Bibliography / Sei C die Klasse der endlichen nilpotenten, auflösbaren, symmetrischen oder halbeinfachen Gruppen und n eine positive ganze Zahl. We diskutieren die folgende Frage über Gruppengesetze: Was ist die Länge des kürzesten nicht-trivialen Gesetzes, das für alle endlichen Gruppen der Klasse C gilt, welche die Ordnung höchstens n haben?:Introduction
0 Essentials from group theory
1 The two main tools
1.1 The commutator lemma
1.2 The extension lemma
2 Nilpotent and solvable groups
2.1 Definitions and basic properties
2.2 Short non-trivial words in the derived series of F_2
2.3 Short non-trivial words in the lower central series of F_2
2.4 Laws for finite nilpotent groups
2.5 Laws for finite solvable groups
3 Semi-simple groups
3.1 Definitions and basic facts
3.2 Laws for the symmetric group S_n
3.3 Laws for simple groups
3.4 Laws for finite linear groups
3.5 Returning to semi-simple groups
4 The final conclusion
Index
Bibliography
|
Page generated in 0.0393 seconds