Return to search

Combinatória das representações irredutíveis do grupo simétrico

Submitted by Geandra Rodrigues (geandrar@gmail.com) on 2018-09-20T13:36:29Z
No. of bitstreams: 1
sarahribeirodejesusferreira.pdf: 854513 bytes, checksum: bdb519074051d0889c62002f16fe1a8e (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-10-01T19:17:08Z (GMT) No. of bitstreams: 1
sarahribeirodejesusferreira.pdf: 854513 bytes, checksum: bdb519074051d0889c62002f16fe1a8e (MD5) / Made available in DSpace on 2018-10-01T19:17:08Z (GMT). No. of bitstreams: 1
sarahribeirodejesusferreira.pdf: 854513 bytes, checksum: bdb519074051d0889c62002f16fe1a8e (MD5)
Previous issue date: 2018-08-13 / Nesse trabalho, apresentamos a teoria de representação básica do grupo simétrico e seus aspectos combinatórios. O objetivo principal desse trabalho é construir um conjunto completo de representações irredutíveis e não equivalentes do grupo simétrico, em termos da sua partição e conceitos combinatórios relacionados com o tableau de Young. Veremos que esse objeto combinatório nos fornecerá duas maneiras de descrever as representações irredutíveis do grupo simétrico, uma via politablóides e uma alternativa via idempotentes da álgebra de grupo, e que, na verdade, essas duas abordagens são isomorfas. Iremos abordar alguns resultados interessantes, como a regra de Young, a regra da ramificação e o algoritmo combinatório da correspondência de Robinson-Schensted. / In this work, we present the basic representation theory of the symmetric group and
its combinatorial aspects. The main objective of this work is to construct a complete
set of irreducible and inequivalent representations of the symmetric group, in terms
of its partition and combinatorial concepts related to Young’s tableau. We will see
that this combinatorial object will provide us two ways of describing the irreducible
representations of the symmetric group, a politabloid pathway, and an alternative via
idempotent group algebra, and that, in fact, these two approaches are isomorphic. We
will cover some interesting results, such as the Young’s rule, the branching rule, and the Robinson-Schensted’s combinatorial matching algorithm.

Identiferoai:union.ndltd.org:IBICT/oai:hermes.cpd.ufjf.br:ufjf/7573
Date13 August 2018
CreatorsFerreira, Sarah Ribeiro de Jesus
ContributorsRabelo, Lonardo, Silva, Jordan Lambert, Silva, Robson da, Ribeiro, Beatriz Casulari da Motta
PublisherUniversidade Federal de Juiz de Fora (UFJF), Mestrado Acadêmico em Matemática, UFJF, Brasil, ICE – Instituto de Ciências Exatas
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Repositório Institucional da UFJF, instname:Universidade Federal de Juiz de Fora, instacron:UFJF
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds