Return to search

Geospatial Variation of an Invasive Forest Disease and the Effects on Treeline Dynamics in the Rocky Mountains

Whitebark pine is an important keystone and foundation species in western North American mountain ranges, and facilitates tree island development in Rocky Mountain treelines. The manifestation of white pine blister rust in the cold and dry treelines of the Rockies, and the subsequent infection and mortality of whitebark pines raises questions as to how these extreme environments harbor the invasive disease, and what the consequences may be for treeline dynamics. This dissertation research comprises three studies that investigate abiotic factors influential for blister rust infection in treeline whitebark pines, how disease coupled with changing climate may affect whitebark pine treeline dynamics, and the connection between treeline spatial patterns and disease. The first study examined the spatial variation of blister rust infection in two whitebark pine treeline communities, and potential topographic correlates. Using geospatial and field approaches to generate high resolution terrain models of treeline landscapes, microtopography associated with solar radiation and moisture were found most influential to blister rust infection in treeline whitebark pines. Using field-based observations from sampled treeline communities, the second study developed an agent-based model to examine the effects of disease and climate on treeline pattern and process. Treeline dynamics were simulated under five hypothetical scenarios to assess changes in tree spatial patterns and populations. Blister rust-induced loss of whitebark pines resulted in a decline of facilitative processes, and an overall negative treeline response to disease—despite the beneficial effects of climate amelioration. The objective of the third study was to explore whether spatial patterns of tree proximity, size, and growth infer disease patterns. Comparing spatial patterns of tree characteristics between diseased and undiseased treeline communities, I found that trees growing near trees with larger stem diameters, and larger tree islands, tended to have more blister rust cankers, and displayed clustered spatial patterns. Undiseased treeline patterns revealed near neighbors smaller in stem diameter and tree island size, and were randomly dispersed. Blister rust diseased whitebark pines reveal spatial autocorrelation, despite the complex blister rust disease life cycle. Overall, findings from this dissertation reveal the implications of invasive disease on sensitive treeline ecotones dependent on a keystone species. / Ph. D.

Identiferoai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/24200
Date22 November 2013
CreatorsSmith-McKenna, Emily Katherine
ContributorsGeography, Resler, Lynn M., Prisley, Stephen P., Malanson, George Patrick, Carstensen, Laurence W.
PublisherVirginia Tech
Source SetsVirginia Tech Theses and Dissertation
Detected LanguageEnglish
TypeDissertation
FormatETD, application/pdf
RightsIn Copyright, http://rightsstatements.org/vocab/InC/1.0/

Page generated in 0.0024 seconds