Wird der Äquator-Pol-Energietransfer als Wärmediffusion berücksichtigt, so gehen Energiebilanzmodelle in Reaktions-Diffusionsgleichungen über, deren Modellfall die (deterministische) Chafee-Infante-Gleichung darstellt. Ihre Lösung besitzt zwei stabile Zustände und mehrere instabile auf der separierenden Mannigfaltigkeit (Separatrix) der stabilen Anziehungsgebiete. Es wird bewiesen, dass die Lösung auf geeignet verkleinerten Anziehungsgebieten mit Minimalabstand zur Separatrix innerhalb von Zeitskalen relaxiert, die höchstens logarithmisch darin anwachsen. Motiviert durch statistische Belege aus grönländischen Zeitreihen wird diese partielle Differentialgleichung unter Störung mit unendlichdimensionalem, Hilbertraum-wertigen, regulär variierenden Lévy''schen reinen Sprungrauschen mit index alpha und Intensität epsilon untersucht. Ein kanonisches Beispiel dieses Rauschens ist alpha-stabiles Rauschen im Hilbertraum. Durch Erweiterung einer Methode von Imkeller und Pavlyukevich auf stochastische partielle Differentialgleichungen wird unter milden Bedingungen bewiesen, dass im Gegensatz zu Gauß''schem Rauschen die erwarteten Austritts- und übertrittszeiten zwischen Anziehungsgebieten polynomiell mit Ordnung in der inversen Intensität für kleine Rauschintensität anwachsen. In Kapitel 6 wird eine zusätzliche natürliche “Separatrixhypothese” über das Sprungmaß, eingeführt, die eine obere Schranke für die Austrittszeiten aus einer Umgebung der Separatrix impliziert. Dies ermöglicht den Nachweis einer oberen Schranke für die Austrittszeiten, welche gleichmäßig für Anfangsbedingungen in dem ganzen Anziehungsgebiet gilt. Es folgen zwei Lokalisierungsergebnisse. Schließlich wird gezeigt, dass die Lösung metastabiles Verhalten aufweist. Unter der “Separatrixhypothese” wird dies auf ein Ergebnis erweitert, welches gleichmäßig im Raum gilt. / If equator-to-pole energy transfer by heat diffusion is taken into account, Energy Balance Models turn into reaction-diffusion equations, whose prototype is the (deterministic) Chafee-Infante equation. Its solution has two stable states and several unstable ones on the separating manifold (separatrix) of the stable domains of attraction. We show, that on appropriately reduced domains of attraction of a minimal distance to the separatrix the solution relaxes in time scales increasing only logarithmically in it. Motivated by the statistical evidence from Greenland ice core time series, we consider this partial differential equation perturbed by an infinite-dimensional Hilbert space-valued regularly varying (pure jump) Lévy noise of index alpha and intensity epsilon. A proto-type of this noise is alpha-stable noise in the Hilbert space. Extending a method developed by Imkeller and Pavlyukevich to the SPDE setting we prove under mild conditions that in contrast to Gaussian perturbations the expected exit and transition times between the domains of attraction increase polynomially in the inverse intensity. In Chapter 6 we introduce an additional natural separatrix hypothesis on the jump measure that implies an upper bound on the exit time of a neighborhood of the separatrix. This allows to obtain an upper bound for the asymptotic exit time uniform for the initial positions inside the entire domain of attraction. It is followed by two localization results. Finally we prove that the solution exhibits metastable behavior. Under the separatrix hypothesis we can extend this to a result that holds uniformly in space.
Identifer | oai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/16951 |
Date | 31 March 2011 |
Creators | Högele, Michael Anton |
Contributors | Imkeller, Peter, Pavlyukevich, Ilya, Zabczyk, Jerzy |
Publisher | Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II |
Source Sets | Humboldt University of Berlin |
Language | English |
Detected Language | English |
Type | doctoralThesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | Namensnennung - Keine kommerzielle Nutzung - Keine Bearbeitung, http://creativecommons.org/licenses/by-nc-nd/3.0/de/ |
Page generated in 0.0033 seconds