The topic of this thesis are subdivisions of simplicial complexes, in particular we focus on the so-called antiprism triangulation. In the first main part, the real-rootedness of the h-polynomial of the antiprism triangulation of the simplex is proven. Furthermore, we study combinatorial interpretations of several invariants as the h- and local h-vector. In the second part, we show the almost strong Lefschetz property of the antiprism triangulation for every shellable simplicial complex.
Identifer | oai:union.ndltd.org:uni-osnabrueck.de/oai:repositorium.ub.uni-osnabrueck.de:urn:nbn:de:gbv:700-202109145342 |
Date | 14 September 2021 |
Creators | Brunink, Jan-Marten |
Contributors | Prof. Dr. Martina Juhnke-Kubitzke, Prof. Dr. Tim Römer |
Source Sets | Universität Osnabrück |
Language | English |
Detected Language | English |
Type | doc-type:doctoralThesis |
Format | application/pdf, application/zip |
Rights | Attribution 3.0 Germany, http://creativecommons.org/licenses/by/3.0/de/ |
Page generated in 0.0022 seconds