Return to search

Subdivisions of simplicial complexes

The topic of this thesis are subdivisions of simplicial complexes, in particular we focus on the so-called antiprism triangulation. In the first main part, the real-rootedness of the h-polynomial of the antiprism triangulation of the simplex is proven. Furthermore, we study combinatorial interpretations of several invariants as the h- and local h-vector. In the second part, we show the almost strong Lefschetz property of the antiprism triangulation for every shellable simplicial complex.

Identiferoai:union.ndltd.org:uni-osnabrueck.de/oai:repositorium.ub.uni-osnabrueck.de:urn:nbn:de:gbv:700-202109145342
Date14 September 2021
CreatorsBrunink, Jan-Marten
ContributorsProf. Dr. Martina Juhnke-Kubitzke, Prof. Dr. Tim Römer
Source SetsUniversität Osnabrück
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:doctoralThesis
Formatapplication/pdf, application/zip
RightsAttribution 3.0 Germany, http://creativecommons.org/licenses/by/3.0/de/

Page generated in 0.0022 seconds