The aim of this thesis was to investigate the question of how to harvest RF energy and if we can harvest enough RF energy for it to be useful in an application. It is aimed towards sensor node applications, commonly used in a typical office environment. The WiFi band was chosen since it is omnipresent in the same environment. With the current development within wireless technology and the IoT domain the demand for low power electronic applications has increased and one of the challenges is to find efficient and sustainable ways of powering these types of devices.The best possible theoretical power content was initially calculated followed by measurements in an office. A circuit was designed containing an impedance matching network and rectifier. A measurement application was constructed using a microcontroller. Measurements were made in an office environment and the maximum harvested energy over 24 hours was 350 mJ. The energy was stored in a supercapacitor and is estimated to be enough to power a low energy sensor for about 30 seconds. A large part of the thesis is devoted to impedance matching involving calculating, simulating and experimenting to get a good result. / Med den nuvarande utvecklingen inom trådlös teknik och IoT-domänen har efterfrågan på elektroniska applikationer med låg effekt ökat och en av utmaningarna är att hitta effektiva och hållbara sätt att driva dessa typer av enheter. Syftet med detta projekt var att undersöka frågan hur vi skördar radiovågsenergi och kan vi skörda tillräckligt mycket med energi för att den ska vara användbar i en applikation. I ett typiskt kontor finns fler källor till radiovågor, däribland WiFi som antas ha en hög nyttjandegrad. Projektet valde att inrikta sig på WiFi bandet och undersöka om det går att utvinna tillräckligt med energi där.Projektet strävade efter att leverera en färdig produkt med alla ingående delar, en antenn, en likriktare, en lagringsenhet och ett matchningsnätverk för att anpassa antenn och likriktare till varandra. För att undersöka hur mycket energi som finns att skörda gjordes först beräkningar och sedan mätningar i bland annat ett typiskt kontor. Det konstaterades att det rör sig om väldigt låga nivåer och betonas att de apparater som använder WiFi klarar av att känna av signaler som är långt mycket lägre än de som krävs för att kunna utvinna energi. Detta innebär alltså att apparaterna kan kommunicera felfritt samtidigt som energiinnehållet är så lågt att det inte går att utvinna någon energi.Projektet ägnar stor del åt att optimera den impedansmatchning som måste ske mellan antenn och likriktare för att största möjliga effektutbyte ska kunna ske. Basen är ett kretskort med ett typiskt impedansnätverk och genom beräkningar, simuleringar och experiment tas en prototyp fram. För att kunna analysera resultaten används en mikrokontroller som tar de analoga värdena, omvandlar dem till digitala och skickar dem till en PC för analys.Mätningar gjordes i en kontorsmiljö och den maximala mängden energi som gick att utvinna var 350 mJ på 24 timmar. Energin lagrades i en superkondensator och bedöms vara tillräcklig för att driva en lågenergisensor i ca 30 sekunder.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-257860 |
Date | January 2019 |
Creators | Fofana, Alpha, Mossberg, Carl |
Publisher | KTH, Skolan för elektroteknik och datavetenskap (EECS) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | TRITA-EECS-EX ; 2019:535 |
Page generated in 0.003 seconds