Under uppvärmda byggnader med grundkonstruktionen betongplatta på mark sker ett värmeflöde ner i marken. Flödet kan liknas med bågformade pilar som strömmar från plattans mitt ut mot kanterna. Vid ökande plattstorlekar kommer värmeflödet från de centrala delarna att hindras på grund av markens ökande värmemotstånd. Värmen lagras då och en temperaturökning sker i marken. Om plattan är tillräckligt stor kommer temperaturen i marken stiga till den grad att risk för skadlig fuktdiffusion uppstår. Drivkraften för fuktflödet är skillnaden i ånghalter mellan den fuktiga marken och den torrare inomhusluften. Om en tät golvbeläggning appliceras på betongen finns det risk att fukten stängs in och leder till problem. De flesta golvbeläggningar har en kritisk relativ ånghalt att förhålla sig till innan golvet tar skada och beror på temperaturskillnaden över konstruktionen. En högsta tillåten relativ ånghalt på 85% under golvbeläggningen motsvarar med förenklingar en temperaturskillnad på 3°C. Avståndet från ytterkanten av plattan där marken uppnår en temperatur som skiljer sig 3°C eller mindre från inomhustemperaturen benämns som kritiska gränsen där skadlig fuktdiffusion kan uppstå. Genom att undvika en hög marktemperatur går det att skydda konstruktionen från fuktproblem. Hur temperaturfördelningen i marken under plattan påverkas vid succesivt ökande plattstorlekar undersöktes både stationärt och dynamiskt med handberäkningar och simuleringar. Plattorna simulerades för Malmö, Gävle och Kiruna. Resultaten visar hur isoleringsmängden tycks ha störst betydelse för temperaturfördelningen. Exempelvis för en plattkonstruktion med 300 mm underliggande isolering i Malmö visade det sig att risken för fuktproblem uppkommer först vid plattbredder på 90 meter, medan det med 100 mm isolering uppstår problem redan vid 40 meter eller större. En större mängd isolering kan alltså fungera som fullgott fuktskydd även för stora plattstorlekar. Temperaturvariationerna i utomhusluften över året leder till svängningar i temperaturen i marken under plattans yttre delar med ett inträningsdjup på cirka 10 meter. Årsvariationernas inverkan på marktemperaturen visade sig inte leda till tillräckligt höga temperaturer för att fuktproblem skulle uppstå i någon av plattorna i de undersökta städerna. / Underneath heated buildings with the foundation structure of a concrete slab on the ground, heat flows into the ground. The flow can be visualized as arc-shaped arrows that move from the center of the slab out towards the edges. With increasing slab sizes, the heat flow from the central parts will be reduced due to the increasing heat resistance of the soil. This will lead to a thermal build up in the ground under the slab with increasing temperature as a result. If the slab is large enough, the temperature in the ground will rise to the point where there is a risk of harmful moisture diffusion. The moisture flow is driven by the difference in the vapour content between the moist soil and the drier indoor air. If a non-permeable floor covering is applied to the concrete, there is a risk that the moisture will be trapped and lead to problems. Most floor coverings have a critical relative humidity that will lead to damage. It depends on the temperature difference through the structure. A maximum permissible relative humidity content of 85% under the floor covering corresponds to a temperature difference of 3°C. The distance from the outer edge of the slab where the ground reaches a temperature that differs 3°C or less from the indoor temperature is referred to as the critical limit at which harmful moisture diffusion can occur. By avoiding a high ground temperature, it is possible to protect the structure from moisture problems. How the temperature distribution in the ground under the slab is affected by successively increasing slab sizes is investigated both stationarily and dynamically with hand calculations and simulations. The slabs were simulated for Malmö, Gävle and Kiruna. The results show how the amount of insulation seems to have the greatest impact on the temperature distribution. For example, a slab structure with 300 mm underlying insulation in Malmö shows that the risk of moisture problems arises at slab widths over 90 meters, while with 100 mm insulation, problems already arise at 40 meters or larger. A thick layer of insulation can thus function as adequate moisture protection even on larger slabs. The temperature variations in the outdoor air over the year lead to fluctuations in the temperature of the ground under the outer parts of the slab with a penetration depth of about 10 meters. The impact of the annual variations in the soil temperature did not turn out to lead to sufficiently high temperatures for moisture problems to occur in any of the slabs in the investigated cities.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:hig-44430 |
Date | January 2024 |
Creators | Karlsson, Jonas, Westlund, Joel |
Publisher | Högskolan i Gävle, Energisystem och byggnadsteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0028 seconds