1 |
Energideklarationen, vinst eller förlust för ägare av äldre småhus?Johansson, Emelie January 2007 (has links)
Den nya lagen (SFS 2006:985) om energideklarering av bostäder trädde i kraft den 1 oktober 2006. I denna deklaration ska byggnaders energiförbrukning anges och vilka åtgärder som rekommenderas för att minska byggnadens energianvändning. Vad händer då med äldre hus, som har dåligt isolerade väggar, tak, grund och i många fall även äldre fönster som inte på långa vägar kommer upp i dagens energisparande krav. I äldre hus är det främst transmissionsförlusterna som står för energiåtgången och i denna rapport görs beräkningar för ett hus byggt 1959 i Växjö. I rapporten framgår det vad man tjänar på att tilläggsisolera och byta fönster samt hur många år det tar innan man har tjänat in på förbättringen av klimatskalet. Det ges även en inblick i vad man bör tänka på om man tilläggsisolerar med avseende på kondensrisk inne i byggnadsdelarna. / October 1st, 2006 a new law (SFS 2006:985) was given effect. The purpose of this law is to confirm a buildings’ specific energy consumption by showing an energy declaration. The declaration shows how much energy the specific building consume and what kind of measures that can be recommended to reduce the energy consumption. In this diploma work, Ihave tried to answer the question: What happens to older buildings that have a high transmission loss through walls, attic and foundation caused by thin insulation and bad windows? The calculations for this report are based on a dwelling house build in 1959. The main task has been to find out what the cost will be and how much money the owner will save by following the recommendations in the report – that is to add insulation material to the construction and to replace the windows. It has to be taken into consideration before making any changes to the house that there might be an increase in humidity in sections of the construction if you make the climate shell thicker and more compact.
|
2 |
Energideklarationen, vinst eller förlust för ägare av äldre småhus?Johansson, Emelie January 2007 (has links)
<p>Den nya lagen (SFS 2006:985) om energideklarering av bostäder trädde i kraft den 1 oktober 2006.</p><p>I denna deklaration ska byggnaders energiförbrukning anges och vilka åtgärder som rekommenderas för att minska byggnadens energianvändning. Vad händer då med äldre hus, som har dåligt isolerade väggar, tak, grund och i många fall även äldre fönster som inte på långa vägar kommer upp i dagens energisparande krav.</p><p>I äldre hus är det främst transmissionsförlusterna som står för energiåtgången och i denna rapport görs beräkningar för ett hus byggt 1959 i Växjö. I rapporten framgår det vad man tjänar på att tilläggsisolera och byta fönster samt hur många år det tar innan man har tjänat in på förbättringen av klimatskalet. Det ges även en inblick i vad man bör tänka på om man tilläggsisolerar med avseende på kondensrisk inne i byggnadsdelarna.</p> / <p>October 1st, 2006 a new law (SFS 2006:985) was given effect. The purpose of this law is to confirm a buildings’ specific energy consumption by showing an energy declaration. The declaration shows how much energy the specific building consume and what kind of measures that can be recommended to reduce the energy consumption.</p><p>In this diploma work, Ihave tried to answer the question: What happens to older buildings that have a high transmission loss through walls, attic and foundation caused by thin insulation and bad windows?</p><p>The calculations for this report are based on a dwelling house build in 1959. The main task has been to find out what the cost will be and how much money the owner will save by following the recommendations in the report – that is to add insulation material to the construction and to replace the windows.</p><p>It has to be taken into consideration before making any changes to the house that there might be an increase in humidity in sections of the construction if you make the climate shell thicker and more compact.</p>
|
3 |
Fuktproblem i uteluftsventilerade kallvindar / Moisture problems in outdoor air ventilated cold atticsLarsson, Anton, Rainio Reivilä, Johannes January 2017 (has links)
Detta examensarbete har genomförts med målet att undersöka om flerbostadshus som byggs enligt NCC:s tekniska plattform har kallvindar som är utsatta för eller riskerar att bli utsatta för fuktskador. En undersökning har gjort gällande hur det kommer sig att vissa konstruktioner klarar sig bättre än andra och vilka alternativa lösningar som finns på detta. Tio objekt valdes ut, alla konstruerade av NCC, alla med vindsbjälklag av betong, ventilerade med uteluft, med underlagstak av råspont och trätakstolar. De ligger alla i Stockholmsområdet och de är färdigställda mellan åren 2004 och 2016. För att göra dessa undersökningar, genomfördes mätningar på tio olika kallvindar. Relativ fuktighet och temperatur mättes med hjälp av klimatloggers som mätte inomhus och utomhus på varje objekt, en gång i timmen under mätperioden från den 13 februari till den 9 april. Fuktkvoten i trä mättes på alla kallvindar, där mätningar gjordes i råspont och takstol i varje väderstreck. Mätningarna gjordes vid tre tillfällen under perioden i varje kallvind. Under besöken genomfördes okulärbesiktningar på alla kallvindar där mögelpåväxt och konstruktionsdetaljer undersöktes. Historiskt sett är fuktproblem på kallvindar vanligt förekommande. Genom att kallvindar har ett välisolerat vindsbjälklag hålls temperaturerna allt som oftast låga i kallvindsutrymmet. Detta kan leda till att utrymmena får en hög relativ fuktighet och är därför utsatta för en ökad risk för fuktproblem. Genom nattutstrålning kan takytan få en lägre temperatur än kallvindsluften, vilket i sin tur kan leda till kondens på råsponten. Fuktkvoterna sjönk i snitt ungefär 4 procentenheter under mätperioden från 12% till 8%, vilket innebär att riskerna för röta eller mögelpåväxt är nästintill obefintlig, då riskerna för mögel och röta kräver fuktkvoter över 16% för att finnas. Den relativa fuktigheten ligger vid ett antal tillfällen över 75% i de olika kallvindarna, vilket är över BBR-kravet. Detta sker dock under perioder när temperaturerna är så låga att risker för fuktskador inte är aktuella. Under mätperioden har snittemperaturen gått upp, vilket har lett till att den relativa fuktigheten har minskat. Risken för mögelpåväxt har även bedömts med hjälp av diagram baserat på data från Smith och Hill samt Viitanen. Enligt dessa finns heller ingen risk för mögelpåväxt i någon av de tio kallvindarna. Enligt den okulära besiktningen kunde inga synliga fuktskador hittas i någon av de tio olika objekten. De fel som hittades var skillnader mellan objektens konstruktionsritningar och dess reella utförande. Objekt 3, 7 och 8 saknade ångspärr, vilket påstods finnas i ritningarna. Objekt 4 saknade luftning i nock som var utritad på ritningarna. Slutsatsen är att NCC:s konstruktioner för kallvindar på flerbostadshus är säkra gällande fuktskador. / This master thesis has been made with the goal to study if apartment buildings built according to NCC:s technical platform has ventilated cold attics exposed to risks for moisture damages. A study has been made to see how some types of constructions holds up better than others and how this can be solved. Ten objects were chosen, all constructed på NCC, all constructed with concrete joists, ventilated with outdoor air, a roof with underlay of tongue and groove and trusses of wood. They’re all situated in the Stockholm area and are completed between the years of 2004 and 2016. To complete these studies, measurements were made in ten different ventilated cold attics. Relative humidity and temperatures were measured with climate loggers, which collected data from both outdoors and indoors once every hour in the period from february 13 to april 9. The water content in wood was measured in all attics in the tongue and grove and the trusses, where measurements were made in all orientations of the attic. This data was collected at three times for each object. During the visits to the object, a visual inspection was made in all attics, where mold growth and construction details were inspected. Historically moisture problems are common in ventilated cold attics. When cold attics has a well insulated roof joist the temperatures is kept low in the attic. This may result in a high relative humidity and are therefore exposed to a higher risk of moisture problems. Due to night radiation the roof’s surface temperature could be lower than the air temperature in the attic, which can result in condensation on the tongue and grove. The water content in the wood decreased with an average of about 4 percentage points during the period of measurement from 12% to 8%, which means that the risks of mold growth and rot is nearly non-existent. To risk mold growth and rot, the water content has to be above 16%. The relative humidity is at a few occasions above 75% in the different attics, which is above the requirements from BBR. This, however, happens during periods when the temperature is at a level where the risk for moisture damage is very low. During the measurement period, the average temperatures has increased which resulted in a decreased relative humidity in the attics. The risk for mold growth has been evaluated in diagrams based on data from Smith and Hill and also Viitanen. According to these there are no risks of mold growth in any of the ten attics. According to the visual inspection no visible moisture damages could be found in any of the ten attics. The faults that were found was differences between the construction drawings and what was actually constructed. In the object 3, 7 and 8 there were no moisture barrier even though the drawings said so. In object 4 there were no ventilation in the ridge, which was to be found in the drawings. The conclusion is that there are no moisture problems in apartment buildings constructed by NCC.
|
4 |
Fuktsäkerhetsarbete i produktionsskedet : Alsters förskola utformas till ett referensobjektQvick, August, Hansson-Böe, Anton January 2016 (has links)
Many buildings in Sweden have some kind of moisture problem and the reason for this can in a lot of cases be attributed to the production phase. A suggested measure by Boverket is to increase feedback to reduce errors in the production phase. This study will therefore contribute to the experience feedback by describing the process of moisture safety during the production phase at Skanska’s construction of Alster’s preschool. The starting point for this study is a moisture survey carried out on Alster’s preschool. The result from the moisture survey suggests that the work with moisture safety has been successful during the construction of Alster’s preschool. The aim of this study is therefore to make Alster’s preschool into an object of reference regarding moisture safety during the production phase. The method involved a theoretical study of building components and materials used in the construction of Alster’s preschool and the moisture aspects that must be taken into account. The method also involved an examination of Skanska’s documents from the construction of Alster’s preschool, supplemented with verbal conversations with Skanska employees. The result describes the process of moisture safety during the production phase at Alster’s preschool. The description includes how the construction was built, material management, examinations that were carried out and the anomalies that occurred. One conclusion that was drawn regarding the applicability of Alster’s preschool as an object of reference is that some similarities should coincide with the new building. Similarities such as supporting structures of wood, meet the passive house standard, one floor construction, and that the building is constructed in a similar climate. Another conclusion that was drawn is that the work with moisture safety in the production phase always should strive to keep building moisture levels below critical numbers. A measure taken in the disposal to make this possible was to achieve a favorable climate regarding moisture in the building. But it is important to consider the required air tightness in the construction before the heating process starts in the building.
|
5 |
Utomhusklimatets påverkan på kallvindskonstruktion : Fuktanalys av kallvind på ett lågenergihus / Outside climats effects on cold attics : Moisture analysis of a cold attic in a low energy houseZetterström, Erik January 2018 (has links)
Att bostäder drabbas av fuktskador är ett vanligt problem i Sverige. Enligt en undersökning utförd av Boverket har 36% av Sveriges bostäder problem med fukt. Fuktproblem leder ofta till mögel- och rötskador som har hälsofarliga konsekvenser för de boende i husen och det är även kostsamt att åtgärda de skador som fukt orsakar. Enligt Boverket (2010) skulle det kosta 90,1 miljarder kronor att åtgärda alla fuktskador i Sveriges bostäder. Kallvindskonstruktionen är en vanlig konstruktionslösning i Sverige, framförallt på småhus, trots att den har visat sig vara en extra känslig konstruktionsdel. I en undersökning utförd av Ahrnens och Boglund (2007) visar det sig att 60% av kallvindarna på småhus i Västra Götaland har stor risk att drabbas av fuktskador. Anledningen till att kallvindskonstruktionen har stor risk att drabbas av fuktproblem är att den ventileras okontrollerat med utomhusluft oavsett vad det råder för luftförhållande utomhus. Är luften fuktig och har en hög relativ fuktighet kommer även kallvindsklimatet få en hög relativ fuktighet, vilket kommer leda till fuktskador om detta förhållande fortsätter under en längre tidsperiod. En direkt koppling har kunnat visats mellan vindsbjälklagets isoleringstjocklek och risken för att kallvinden ska drabbas av fuktskador (mögel och röta); tjockare isolering leder till att risken drastiskt ökar. På grund av den ökade isoleringstjockleken läcker mindre värmeenergi upp från huset och därmed sänks temperaturen i vindsutrymmet och då ökar den relativa fuktigheten. Detta innebär att lågenergihus har en förhöjd risk att drabbas av fuktproblem i vindsutrymmet då det krävs en tjock isoleringsmängd i husets vindsbjälklag för att klara de energikrav som ställs på lågenergihus. För att förstå hur utomhusklimatet påverkar en konventionell kallvindskonstruktion har denna studie utförts på ett hus med sensorer. Huset är beläget i Molkom några mil norr om Karlstad, Värmland. Huset är klassat som ett lågenergihus med en konventionell kallvindskonstruktion. I denna studie har det undersökts hur väderfaktorerna vindhastighet, vindriktning, temperatur, relativ fuktighet och nederbörd påverkar kallvindens klimat. Det har även gjorts en analys om kallvindskonstruktionen löper risk för att drabbas av fuktskador. Sensorerna som har suttit placerade vid den aktuella byggnaden har mätt vindhastighet, vindriktning, temperatur, relativ fuktighet och nederbörd under ett år. Det har även suttit sensorer i kallvindsutrymmet som har mätt temperatur, relativ fuktighet och fukthalt i takstolen. Med hjälp av dessa data har en dataanalys utförts för att se hur de olika väderfaktorerna påverkar kallvindens klimat. Resultatet av dataanalysen visar att kallvinden på den aktuella byggnaden löper en liten risk att drabbas av ett mögelangrepp på grund av hög relativ fuktighet (över 75%) under en lång tidsperiod och kan därmed inte anses som en fuktsäker konstruktionsdel. Kallvindens klimat påverkas beroende på vilken vindriktning det blåser ifrån. När vind råder från nord och öst påverkar det kallvindens klimat generellt positivt, medan vind från syd och väst försämrar generellt kallvindens klimat. Vindhastigheten har däremot ingen betydande påverkan på hur mycket de olika vindriktningarna påverkar. Analysen visar även att kallvindens klimat generellt följer det klimat som råder utomhus. Detta leder till att när det råder nederbörd blir utomhusluften fuktigare vilket då också leder till att kallvindens klimat blir fuktigare. Det visar sig också att det är generellt bra att ventilera kallvinden på våren och sommaren, medan kallvindens klimat försämras på hösten och vintern när den ventileras med utomhusluft. Samtliga bilder och tabeller är publicerade med tillstånd.
|
6 |
Fukt i material under byggskedet / Moisture in construction material during the construction phaseYousuf, Jabran, Rezaie, Hamed January 2017 (has links)
Detta arbete tar upp fuktproblemen vid materialförvaring samt vid leverans. Fokus i arbetet ligger på trämaterial, dock har även andra byggnadmaterial tagits upp. Fuktmätningar och intervjuer på byggarbetsplatser har gjorts för att få en bild på hur byggnadsmaterialet hanteras på byggarbetsplatser. Arbetet visar att beställaren kan ha en stor påverkan på hur byggnadsmaterialet hanteras på byggarbetsplatserna.
|
7 |
Styrning av inneklimat i kyrkor : Enkla åtgärder för att undvika hög luftfuktighet och mögelTrogen, Claes, Östlund, Patrik January 2021 (has links)
Churches are old historical buildings often built of stone that carry a heritagethat is important to preserve for the future. It’s common that churches haveproblems with high relative humidity which also causes mold growth. Moldspores are found naturally in the air but require good conditions, such as highhumidity, materials to adhere to and a favorable temperature, to start growing.Attempts have been made to reduce the humidity in churches with varioushumidity-limiting methods. The purpose of this study is to investigate whetherclimate control methods can prevent the growth of church mold and control therelative humidity so that the results can provide guidelines for other churcheswith the same problems. Nine churches in north Gotland's pastorate have been used in the study. In threeof these, textile cabinets were installed in the sacristy for three different climatecontrol methods: humidity-controlled dehumidification, mechanical exhaustventilation and humidity-controlled heating element. These were measured overan eight-month period with a data logger that measured the relative humidityand temperature once every half an hour. Measurements were also taken fromthe respective sacristy. For the other six churches, measurements were taken bythe organ during a 12-month period with the same data logger. Then a moisturecontrolled dehumidifier was installed in only three of the churches in the middleof the church room. The relative humidity and temperature were measured onceagain in all six churches for the next eight months. The results from this study show that in the three churches where moisturecontrolled dehumidification was installed, the measured values were slightlybetter for both relative humidity and the risk of developing mold. In the textilecabinets, on the other hand, the values for both relative humidity and the riskof mold were slightly higher than in those for the respective sacristy. However,the values were somewhat more stable which is a good thing. The need to regulate the climate of churches will not decrease. Finding costeffective solutions for controlling the indoor climate is therefore important forpreserving their cultural-historical heritage.
|
8 |
Värmerelaterade fuktproblem i betongplattor på markKarlsson, Jonas, Westlund, Joel January 2024 (has links)
Under uppvärmda byggnader med grundkonstruktionen betongplatta på mark sker ett värmeflöde ner i marken. Flödet kan liknas med bågformade pilar som strömmar från plattans mitt ut mot kanterna. Vid ökande plattstorlekar kommer värmeflödet från de centrala delarna att hindras på grund av markens ökande värmemotstånd. Värmen lagras då och en temperaturökning sker i marken. Om plattan är tillräckligt stor kommer temperaturen i marken stiga till den grad att risk för skadlig fuktdiffusion uppstår. Drivkraften för fuktflödet är skillnaden i ånghalter mellan den fuktiga marken och den torrare inomhusluften. Om en tät golvbeläggning appliceras på betongen finns det risk att fukten stängs in och leder till problem. De flesta golvbeläggningar har en kritisk relativ ånghalt att förhålla sig till innan golvet tar skada och beror på temperaturskillnaden över konstruktionen. En högsta tillåten relativ ånghalt på 85% under golvbeläggningen motsvarar med förenklingar en temperaturskillnad på 3°C. Avståndet från ytterkanten av plattan där marken uppnår en temperatur som skiljer sig 3°C eller mindre från inomhustemperaturen benämns som kritiska gränsen där skadlig fuktdiffusion kan uppstå. Genom att undvika en hög marktemperatur går det att skydda konstruktionen från fuktproblem. Hur temperaturfördelningen i marken under plattan påverkas vid succesivt ökande plattstorlekar undersöktes både stationärt och dynamiskt med handberäkningar och simuleringar. Plattorna simulerades för Malmö, Gävle och Kiruna. Resultaten visar hur isoleringsmängden tycks ha störst betydelse för temperaturfördelningen. Exempelvis för en plattkonstruktion med 300 mm underliggande isolering i Malmö visade det sig att risken för fuktproblem uppkommer först vid plattbredder på 90 meter, medan det med 100 mm isolering uppstår problem redan vid 40 meter eller större. En större mängd isolering kan alltså fungera som fullgott fuktskydd även för stora plattstorlekar. Temperaturvariationerna i utomhusluften över året leder till svängningar i temperaturen i marken under plattans yttre delar med ett inträningsdjup på cirka 10 meter. Årsvariationernas inverkan på marktemperaturen visade sig inte leda till tillräckligt höga temperaturer för att fuktproblem skulle uppstå i någon av plattorna i de undersökta städerna. / Underneath heated buildings with the foundation structure of a concrete slab on the ground, heat flows into the ground. The flow can be visualized as arc-shaped arrows that move from the center of the slab out towards the edges. With increasing slab sizes, the heat flow from the central parts will be reduced due to the increasing heat resistance of the soil. This will lead to a thermal build up in the ground under the slab with increasing temperature as a result. If the slab is large enough, the temperature in the ground will rise to the point where there is a risk of harmful moisture diffusion. The moisture flow is driven by the difference in the vapour content between the moist soil and the drier indoor air. If a non-permeable floor covering is applied to the concrete, there is a risk that the moisture will be trapped and lead to problems. Most floor coverings have a critical relative humidity that will lead to damage. It depends on the temperature difference through the structure. A maximum permissible relative humidity content of 85% under the floor covering corresponds to a temperature difference of 3°C. The distance from the outer edge of the slab where the ground reaches a temperature that differs 3°C or less from the indoor temperature is referred to as the critical limit at which harmful moisture diffusion can occur. By avoiding a high ground temperature, it is possible to protect the structure from moisture problems. How the temperature distribution in the ground under the slab is affected by successively increasing slab sizes is investigated both stationarily and dynamically with hand calculations and simulations. The slabs were simulated for Malmö, Gävle and Kiruna. The results show how the amount of insulation seems to have the greatest impact on the temperature distribution. For example, a slab structure with 300 mm underlying insulation in Malmö shows that the risk of moisture problems arises at slab widths over 90 meters, while with 100 mm insulation, problems already arise at 40 meters or larger. A thick layer of insulation can thus function as adequate moisture protection even on larger slabs. The temperature variations in the outdoor air over the year lead to fluctuations in the temperature of the ground under the outer parts of the slab with a penetration depth of about 10 meters. The impact of the annual variations in the soil temperature did not turn out to lead to sufficiently high temperatures for moisture problems to occur in any of the slabs in the investigated cities.
|
9 |
Tilläggsisolering och fuktproblem i grundkonstruktionen platta på mark : En fallstudie i flerbostadshus inom stadsdelen Sätra i GävleBlom, Linus, Hedlund, Dan January 2014 (has links)
Between 1965 and 1974, the Swedish Parliament decided to build one million dwellings, called Million Program. The million program buildings were erected with new, untried design solutions, in a short range of time, and at low cost. The residential buildings from that time are now greatly in need of renovation. The municipal housing company, Gavlegårdarna, renovates and improves the energy efficiency at some of it’s apartment buildings in the district Sätra, Gävle. One problem is how to make the basic design of the slab on ground more energy efficiency and moisture proof. The study covers four representative flooring types in the Gavlegårdarnas million program area in Sätra. This study aims to investigate and evaluate proven methods for adding insulation in the four floor types. Also to look for solutions by designing additional insulation to treat damp problems and improve energy efficiency in an economical way. Existing flooring types are to be examined to check for new solutions as well. The aim is to produce a number of measures to provide property owners with different energy efficiency solutions. Results of calculations show that the perimeter area of the slab is exposed to moisture problems, while the centre of it does not have any notable problems. According to calculations, improved floor types have U-values reduced by 31% – 40% depending on the insulation thickness and design. However, investments have a long payback period and this is sometimes not economically viable. When a redevelopment project is performed, it is beneficial to simultaneously add insulation. If investors promote sustainable development, reduced energy consumption by the proposed measures is viable, as advocated by the environmental goals set by Sweden and the EU. / Sveriges riksdag beslutade att det skulle byggas en miljon bostäder, så kallade miljonprogramshus, mellan åren 1965 och 1974. Miljonprogramshusen uppfördes med nya och obeprövade konstruktionslösningar, på kort tid och till låga kostnader. Idag är bostadshusen från den tiden i stort behov av renovering. Det kommunalägda bostadsbolaget Gavlegårdarna håller på att renovera och energieffektivisera några av sina flerbostadshus i stadsdelen Sätra, Gävle. Ett problem är hur grundkonstruktionen, platta på mark i flerbostadshusen ska energieffektiviseras och fuktsäkras. Denna undersökning behandlar fyra representativa golvkonstruktioner som förekommer i Gavlegårdarnas miljonprogramsområde i Sätra. Syftet med undersökningen är att studera och utvärdera beprövade metoder för tilläggsisolering på de fyra utvalda golvtyperna. Lösningsförslagen på tilläggsisoleringsåtgärderna ska behandla fuktproblem, ekonomi och energieffektivisering. Resultaten från undersökningen visar att markplattans kantbalk är utsatt för fuktproblem medan plattans mitt inte har några anmärkningsvärda problem. Enligt U- värdesberäkningarna förbättras golvtypernas U-värde med 31 % - 40 % beroende på isoleringstjocklek och utförande, dock har investeringarna långa återbetalningstider. Utförs ett renoveringsarbete är det fördelaktigt att samtidigt tilläggsisolera. Satsar investerarna på en hållbar utveckling med minskad energianvändning rekommenderas förslagna åtgärderna, vilket förespråkas i miljömål uppsatta av Sverige och EU.
|
10 |
Fuktskador i skolor från 1970-talet i Växjö Kommun / Moisture related problems in schools from 1970s in VäxjöMovehede, Aidin Ramin, Botic, Martin January 2017 (has links)
På grund av bristande erfarenheter inom byggtekniken gällande fukt har många skolor byggda under 1970-talet fuktproblem idag. I uppdrag av Vöfab ska tre olika fuktskadade objekt som har renoverats jämföras med varandra. Objekten består av tre skolor i Växjö som är byggda under 1970-talet. Objektens fuktskador och åtgärder ska undersökas. Detta görs för att analysera om samma typ av åtgärder vidtagits samt om samma typ av fuktproblem uppkommit i alla tre objekten. I studien ska det med hjälp av det teoretiska ramverket även undersökas om ytterligare fuktproblem kan uppkomma i framtiden trots renoveringarna.
|
Page generated in 0.1062 seconds