Return to search

Probabilités et géométrie dans certains groupes de type fini

Dans de nombreux phénomènes régis par le hasard, le résultat de l'observation provient de la combinaison aléatoire d'événements élémentaires : le gain d'un joueur au jeu de pile ou face est le résultat de parties successives, mélanger un jeu de cartes s'effectue en plusieurs battages consécutifs, l'enchevêtrement d'une molécule d'ADN dans une cellule est le produit, entre autres, de croisements successifs. Ces événements élémentaires ont la particularité d'être réversibles (gagner/perdre au pile ou face, croiser/décroiser des brins d'ADN) et l'aléa régissant leur combinaison possède une certaine indépendance (l'issue d'une partie de pile ou face n'a a priori aucune influence sur la suivante). Un modèle possible pour ces phénomènes consiste à considérer un groupe G, fini ou dénombrable, que l'on munit d'une mesure de probabilité μ. On effectue des tirages successifs d'éléments dans G avec les hypothèses suivantes : les tirages sont indépendants, et, pour chaque tirage, μ(g) est la probabilité de tirer l'élément g. Si g1, g2,...,gn est le résul- tat de n tirages, on forme le produit g1.g2. ... . gn. C'est, par définition, la position à l'instant n de la marche aléatoire sur G de loi μ, et la question est : que peut-on dire du comportement asymptotique de g1.g2. ... .gn lorsque n augmente in- définiment ? La marche aléatoire s'en va-t'elle à l'infini ? Si oui, dans quelle direction ? Et à quelle vitesse ? Mes travaux depuis 2003 sont consacrés, pour l'essentiel, à l'étude du comportement asymptotique des marches aléatoires dans trois familles de groupes infinis, non abéliens et de type fini : les produits libres de groupes finis, les groupes d'Artin diédraux, ainsi que certaines extensions des groupes libres. Ils sont le fruit de collaborations avec Jean Mairesse (CNRS, Paris VI) et François Gautero (Université de Nice). Dans le cas des produits libres de groupes finis, nous décrivons précisément la mesure harmonique pour les marches aléatoires au plus proche voisin dans ces groupes, ce qui permet de calculer la vitesse et l'entropie asymptotique. En particulier, ces quantités dépendent de façon analytique des coefficients de μ. Considérant l'inégalité fondamentale de Yves Guivarc'h entre vitesse, entropie et croissance, nous montrons que les générateurs canoniques des produits libres de groupes finis sont extrémaux au sens de Vershik. Les groupes d'Artin diédraux forment une classe de groupes d'Artin qui généralise le groupe de tresses à trois brins B3 et pour laquelle nous donnons une description précise des géodésiques. La connaissance de la vitesse de fuite des marches aléatoires au plus proche voisin dans le groupe B3 est un premier outil de mesure de la complexité asymptotique d'une tresse aléatoire. Dans ce cas, on montre que la vitesse dépend de façon lipschitzienne mais non différentiable de μ, faisant apparaître certaines transitions de phase. Enfin, en ce qui concerne les extensions du groupe libre, nous montrons que, dans certains cas (comprenant notamment les extensions cycliques) les fonctions μ-harmoniques bornées sont entièrement décrites via le bord du groupe libre sous-jacent. La preuve repose sur l'existence d'actions non triviales de ces groupes sur des arbres réels, couplée à des critères généraux sur les compactifications des groupes développés par Vadim Kaimanovich.

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00919399
Date25 November 2011
CreatorsMathéus, Frédéric
PublisherUniversité de Bretagne Sud
Source SetsCCSD theses-EN-ligne, France
Languagefra
Detected LanguageFrench
Typehabilitation ࠤiriger des recherches

Page generated in 0.0018 seconds