Le modèle de dimères est un système de mécanique statistique qui modélise l'adsorption de molécules diatomiques sur la surface d'un cristal, représenté par un réseau périodique plan biparti. On attribue à chaque type d'arête une énergie. Pour une telle distribution d'énergie, il existe une famille à deux paramètres de mesures de Gibbs, dont les comportements sont classifiés en trois phases : gazeuse, liquide, solide.<br /><br />Dans la première partie, on étudie le comportement d'un tel système près de la transition liquide-solide. En examinant le cas du réseau hexagonal, nous exhibons deux types de comportements limites. Le premier est une collection de chemins aléatoires conditionnés à s'éviter. Le deuxième, le modèle du collier de perles, est un processus ponctuel sur ZxR. Ces deux modèles limites ont pour marginales le processus déterminantal sur R avec noyau sinus, décrivant aussi les valeurs propres des grandes matrices aléatoires de l'ensemble GUE. Le modèle du collier de perles est universel : on montre qu'il est la limite de tout modèle de dimères sur un graphe planaire biparti périodique.<br /><br />Dans une deuxième partie, on étudie la statistique des motifs dessinés par des dimères. Les fluctuations de densité d'un motif convergent à la limite d'échelle vers un champ gaussien. Dans le cas liquide, l'objet limite est la somme d'une dérivée du champ libre et d'un bruit blanc indépendant. Pour une mesure gazeuse, la limite est juste un bruit blanc.<br /><br />Enfin, on aborde un problème de dénombrement de chemins sur le graphe-échelle, lié à l'étude du noyau de la chaleur sur le groupe de l'allumeur de réverbères, ainsi qu'à celle des opérateurs de Schrödinger aléatoires.
Identifer | oai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00011334 |
Date | 26 October 2005 |
Creators | Boutillier, Cédric |
Publisher | Université Paris Sud - Paris XI |
Source Sets | CCSD theses-EN-ligne, France |
Language | French |
Detected Language | French |
Type | PhD thesis |
Page generated in 0.0019 seconds