Return to search

Selbstorganisierte Nanostrukturen in katalytischen Oberflächenreaktionen

In der vorliegenden Arbeit werden Musterbildungsphänomene auf Submikrometerskalen in reaktiven Adsorbaten auf einkristallinen Katalysatoroberflächen theoretisch untersucht. Da auf solch kleinen Skalen Fluktuationen nicht mehr vernachlässigt werden können, wird eine mesoskopische Theorie entwickelt, die zwischen mikroskopischen Gittermodellen und Reaktions-Diffusions-Systemen vermittelt. Sie beschreibt die Dynamik lokal gemittelter Adsorbatbedeckungen im Rahmen eines Kontinuumsmodells unter Berücksichtigung interner Fluktuationen. Dieser Ansatz wird auf verschiedene Systeme angewendet, in denen sich Muster auf Längenskalen ausbilden, die kleiner als die charakterist ische Diffusionslänge sind, die typischerweise im Mikrometerbereich liegt. Wie beispielsweise in kürzlich durchgefh hrten Experimenten mit einem vergleichsweise schnellen Rastertunnelmikroskop beobachtet wurde, können attraktive Adsorbat-Adsorbat-Wech sel wirkungen zu verschiedenen Mustern auf Nanometerskalen führen. Hier wird zunächst eine einzelne Adsorbatspezies betrachtet. In Abwesenheit von Nichtgleichgewichtsreaktionen können hinreichend starke attraktive laterale Adsorbatwechselwirkungen einen Phasenh bergang erster Ordnung in der Adsorbatbedeckung induzieren. Die mesoskopische Entwicklungsgleichung wird auf die Modellierung der Kinetik dieses Phasenh bergangs angewendet. Berücksichtigt man zusätzlich eine Nichtgleichgewichtsreakti on, so können sich stationäre räumlich periodische Mikrostrukturen aufgrund der Konkurrenz zwischen dem Phasenh bergang und der Reaktion ausbilden. Die Vorraussetzungen für deren Auftreten und ihre charakteristischen Eigenschaften werden hier detailliert analysiert. Unter anderem werden alternierende Wechselwirkungen diskutiert und der Einfluß globaler Kopplung durch die Gasphase auf die Musterbildung wird betrachtet. Außerdem wird gezeigt, da8 die Mikrostrukturen auch durch vergleichsweise starke interne Fluktuationen nicht zerstört werden. Im nächsten Schritt wird ein hypothetisches Modell für zwei verschiedene Adsorbatspezies untersucht, in dem ein ähnlicher Mechanismus zur Bildung von laufenden und stehenden Wellenmustern auf der Nanoskala führt. Werden vergleichsweise starke interne Fluktuationen berücksichtigt, so brechen diese Wellenmuster auf und man beobachtet eine komplexe Dynamik miteinander wechselwirkender Wellenfragmente. Im letzten Beispiel wird anhand der Analyse eines einfachen Modells gezeigt, da8 sich auf Skalen unterhalb der Diffusionslänge selbstorganisierte Mikroreaktoren in einer einzelnen reaktiven Adsorbatspezies ausbilden können, ohne daß die Teilchen miteinander wechselwirken. Sie entsprechen lokalisierten Strukturen, die aufgrund des Zusammenspiels einer Nichtgleichgewichtsreaktion, der Diffusion und eines adsorbatinduzierten strukturellen Phasenh bergangs in der Substratoberfläche entstehen. / Nanoscale pattern formation in reactive adsorbates on single crystal surfaces is investigated theoretically. Because on such small scales fluctuations become important, a mesoscopic theory for the adsorbate coverage is developed, which aims at providing a link between microscopic lattice models and reaction-diffusion equations. It describes the dynamics for the locally averaged adsorbate coverages in a continuum model taking into account internal fluctuations. This approach is applied to several systems, where patterns on scales smaller than the characteristic diffusion length, which typically lies in the micrometer range, can be formed. As has been observed e.g. in recent experiments with fast scanning tunneling microscopy, a variety of nanoscale patterns can result from the presence of attractive adsorbate-adsorbate interactions. Here, at first a single species of such an adsorbate is considered. In the absence of nonequilibrium reactions, strong enough attractive lateral interactions can induce a first-order phase transition in the adsorbate coverage. The mesoscopic evolution equation is applied to model the kinetics of this phase transition. If additionally a nonequilibrium reaction is present, stationary spatially periodic microstructures may arise as a result of the competition of the attractive lateral interactions and the reactions. The conditions for their appearance and their properties are investigated in detail, e.g. alternating lateral interactions are discussed and the influence of global coupling through the gas phase is analyzed. Furthermore, it is shown that they are not destroyed by relatively strong internal fluctuations. In the next step, a hypothetical model for two different reactive adsorbate species is investigated, where a similar mechanism leads to the formation of nanoscale traveling and standing waves. In the presence of relatively strong internal fluctuations these waves break up and a complex dynamics of interacting wave fragments is observed. In the last example, it is shown in the analysis of a simple model that self-organized nonequilibrium microreactors with submicrometer sizes may spontaneously develop in a single reactive adsorbate species without attractive lateral interactions. They represent localized structures resulting from the interplay between reaction, diffusion and an adsorbate-induced structural transformation of the surface.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/15027
Date25 June 1999
CreatorsHildebrand, Michael
ContributorsMikhailov, A. S., Schöll, E., Schimansky-Geier, L.
PublisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I
Source SetsHumboldt University of Berlin
LanguageGerman
Detected LanguageEnglish
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf, application/postscript

Page generated in 0.0152 seconds