Return to search

The Atomic Structure of Ultrathin Germania Films

Die Herstellung von ultradünnen Germaniumdioxidfilmen auf Metallsubstraten ist erstmals erfolgreich gelungen. Die Filmstruktur konnte mittels oberflächensensitiven Techniken mit atomarer Präzision und chemischer Sensitivität aufgelöst werden. Zur Untersuchung werden STM-Bilder analysiert und durch niederenergetische Elektronenbeugung (LEED), eine dynamischen LEED-Studie und extern ausgeführte Dichtefunktionaltheorieberechnungen (DFT) ergänzt.


In dieser Arbeit werden atomar aufgelöste Rastertunnelmikroskopiebilder (STM) von ultradünnen Germaniumdioxid- und Siliziumdioxidfilmen direkt verglichen. Ziel der Analyse ist es, den Einfluss des Metallsubstrats auf die Struktur von Oxidfilmen zu untersuchen. Zu diesem Zweck werden ultradünne Germaniumdioxid-Filme auf Ru(0001), Pt(111) und Au(111) abgeschieden und mit Siliziumdioxid-Filmen auf verschiedenen Substraten verglichen, die in früheren Studien untersucht wurden. Germaniumdioxid und Siliziumdioxid sind eng miteinader verknüpft. Hierbei sind Struktur und chemische Eigenschaften als äquivalent anzusehen.


Es wurden drei verschiedene Netzwerkstrukturen aufgeklärt: Monolagen-, Zickzack- und Bilagenfilme. Die einzelnen Bausteine in diesen Filmsystemen bestehen aus verzerrten Tetraedern, in denen ein Germaniumatom von vier Sauerstoffatomen umgeben ist. Benachbarte Tetraeder sind durch Ge-O-Ge-Bindungen miteinander verknüpft und binden im Fall der Monolagenfilme an das darunterliegende Metallsubstrat. In Bilagenfilmen hingegen gibt es keine chemischen Bindungen zum Substrat, wodurch die Filmstruktur flexibler wird. Durch Variation der Herstellungsbedingungen kann man rein kristalline, amorphe oder Phasen mittlerer Ordnung erhalten. Es ist wichtig hervorzuheben, dass der amorphe Germaniumdioxid-Bilagenfilm ein neues amorphes zweidimensionales Material darstellt. / The preparation of metal-supported ultrathin films of germanium dioxide, termed also germania, has been successfully achieved for the first time. The structure of the films is elucidated with atomic precision and chemical sensitivity using surface science techniques. The investigation is performed by analyzing STM images and is complemented by low-energy electron diffraction (LEED) patterns, a dynamical LEED study, and external support from density functional theory (DFT) calculations.


In this work, we compare side-by-side atomically-resolved scanning tunneling microscopy (STM) images of ultrathin films of germania and silica. The analysis aims to investigate the impact of the metal support on the structure of oxide films. For that purpose, ultrathin germania films are grown on Ru(0001), Pt(111) and Au(111), and compared with previously reported silica ultrathin films supported on different substrates. Germania has been widely associated with silica since they are considered to be structural and chemical equivalent materials.


Three main network structures have been characterized: monolayer, zigzag and bilayer films. In all systems, the building block consists of a distorted tetrahedron with a germanium atom surrounded by four oxygen atoms. Adjacent tetrahedra connect to each other through Ge-O-Ge bonds and, in the case of the monolayer films, they also bind to the metal support. Conversely, in bilayer films there are no chemical bonds to the metal substrate, thus providing more flexibility to the film structure. Through a meticulous control of the preparation conditions one can obtain a purely crystalline phase, an amorphous one, or one with intermediate order. It is important to highlight that the amorphous germania bilayer film represents a new 2-dimensional amorphous material.

Identiferoai:union.ndltd.org:HUMBOLT/oai:edoc.hu-berlin.de:18452/21624
Date11 December 2019
CreatorsLewandowski, Adrián Leandro
ContributorsFreund, Hans-Joachim, Rademann, Klaus, Sterrer, Martin
PublisherHumboldt-Universität zu Berlin
Source SetsHumboldt University of Berlin
LanguageEnglish
Detected LanguageEnglish
TypedoctoralThesis, doc-type:doctoralThesis
Formatapplication/pdf
Rights(CC BY 3.0 DE) Namensnennung 3.0 Deutschland, http://creativecommons.org/licenses/by/3.0/de/

Page generated in 0.0027 seconds