Return to search

Imaging Atoms and Molecules with Strong Laser Fields

We study multi-photon ionization of rare gas atoms and small molecules by infrared femtosecond laser pulses. We demonstrate that ionization is accurately described by a tunnelling model when many infrared photons are absorbed. By measuring photo-electron and photo-ion spectra, we show how the sub-Ångstrom spatial resolution of tunnelling gives information about electron densities in the valence shell of atoms and molecules. The photo-electron and photo-ion momentum distributions are recorded with a velocity map imaging (VMI) spectrometer. We describe a tomographic method for imaging a 3-D momentum distribution of arbitrary symmetry using a 2-D VMI detector. We apply the method to measure the 3-D photo-electron distribution in elliptically polarized light. Using circularly polarized light, we show how the photo-electron momentum distribution can be used to measure the focused laser intensity with high precision. We demonstrate that the gradient of intensities present in a focused femtosecond pulse can be replaced by a single average intensity for a highly nonlinear process like multi-photon ionization. By studying photo-electron angular distributions over a range of laser parameters, we determine experimentally how the photon linear momentum is shared between the photo-electron, photo-ion and light field. We find the photo-electron carries only a portion of the total linear momentum absorbed. In addition we consider how angular momentum is shared in multi-photon ionization, and find the photo-electron receives all of the angular momentum absorbed. Our results demonstrate how optical and material properties influence the photo-electron spectrum in multi-photon ionization. These will have implications for molecular imaging using femtosecond laser pulses, and controlling the initial conditions of laser generated plasmas.

Identiferoai:union.ndltd.org:uottawa.ca/oai:ruor.uottawa.ca:10393/24023
Date January 2013
CreatorsSmeenk, Christopher
ContributorsCorkum, Paul
PublisherUniversité d'Ottawa / University of Ottawa
Source SetsUniversité d’Ottawa
LanguageEnglish
Detected LanguageEnglish
TypeThesis

Page generated in 0.0014 seconds