Inom den svenska matematikundervisningen på gymnasiet möter eleverna många olika matematiska uppgifter. Uppgifterna skiljer sig i att de testar olika förmågor men även hur uppgifterna är formulerade skiljer sig. Det kan bland annat röra sig om uppgifter som är textbaserade, grafiskt utformade eller som har en algebraisk representationsform. Denna studie avser att undersöka om representationsformen på matematiska uppgifter kan ha någon påverkan på i vilken utsträckning elever kan lösa uppgifterna samt redogöra för vilka de vanligaste misstagen kan vara inom de olika representationsformerna. Studien syftar även till att se om det är någon skillnad på svarsfrekvensen beroende på om uppgifterna testar elevernas förmåga att genomföra beräkningar (procedurell kunskap) eller förmågan att uppfatta begrepp och principer (konceptuell kunskap). Teorin som används vid framtagandet av uppgifter är Hallidayan-modellen om olika sätt att presentera matematik samt principen om procedurell- och konceptuell kunskap. Metoden som används inom studien är insamling av elevlösningar på tre olika prov som tar sin grund i var sin av de olika representationsformerna: textbaserat, grafiskt och algebraiskt samt att alla tre innehåller uppgifter som testar deras procedurella samt konceptuella kunskap. Resultatet visar att representationsformen på uppgifterna har betydelse för i vilken utsträckning eleverna kan lösa dem och att eleverna har speciellt svårt för grafiskt formulerade uppgifter. Resultatet visar även att eleverna är bättre på att genomföra beräkningar än att förstå matematiska principer. I diskussionen presenteras olika tankar och idéer till hur det kan komma sig att resultatet ser ut som det gör samt vad resultatet kan ha för påverkan på matematikundervisningen framöver. / In the Swedish mathematical education on upper secondary school level, the students face many different mathematical tasks. The tasks are being separated by testing different abilities and in how they are designed. They could differ in how they are presented, and they could for example be text based, graphical and algebraic. These are three different ways of form of representation. This study intends to examine if the form of representation could have an impact on to which extent the student can solve the tasks and elucidate the most common mistakes within the different form of representation. The study also aims to determine if there are any difference in the frequency of the response depending on if the task assess student’s ability to perform calculations (procedural knowledge) or the ability to recognize concepts and principles (conceptual knowledge). The theory used in developing the tasks is the Halliday’s model of different ways to present mathematics and the principles of procedural and conceptual knowledge. The method that is used in this study is collection of student’s answer in three different tests, each based on one of the three forms of representation: text based, graphical and algebraic. Additionally, all three tests contain two tasks which will test the students procedural and conceptual knowledge. The results show that the form of representation have an impact on the extent to which students can solve the tasks and that students particularly struggle with graphically formulated tasks. The results also reveal that students are better at performing calculations than understanding mathematical principles. The discussion presents various thoughts and ideas on why the results appear as they do and what impact the results may have on mathematical education in the future.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:oru-114360 |
Date | January 2024 |
Creators | Isacson, Isac, Landoff, Mathilda |
Publisher | Örebro universitet, Institutionen för naturvetenskap och teknik |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0035 seconds