Return to search

Nouveaux milieux électrolytiques à base de thiourées cycliques ainsi que leurs disulfures pour application en cellule photovoltaïque électrochimique

Avec les problèmes environnementaux de plus en plus importants et la hausse de la demande en produits dérivés du pétrole qui a contribué, entre autres, à l'augmentation du prix de l'essence (loi de l'offre et de la demande), il est important d'explorer d'autres sources d'énergie. Dans notre laboratoire, la conversion de l'énergie solaire en énergie électrique via un effet photovoltaïque attire particulièrement notre attention. L'objectif principal de ce projet est l'étude de milieux électrolytiques liquides ou gels contenant un couple redox dont la forme réduite est une thiourée cyclique avec, en positions 1 et 3, un groupement électrodonneur (CH₃, CH₂CH₃ ou CH(CH₃)₃); la forme oxydée est le disulfure correspondant. Les propriétés électrochimiques, électriques et rhéologiques de ces milieux permettent de suggérer celui qui serait le plus approprié pour une application dans une cellule photovoltaïque électrochimique. En modifiant la nature du substituant en positions 1 et 3, quatre couples redox ont été étudiés, soit le 1,3-diméthylimidazolidine-2-thione et son disulfure (couple redox A), le 1,3-diéthylimidazolidine-2-thione et son disulfure (couple redox B), le
1-éthyl-3-méthylimidazolidine-2-thione et son disulfure (couple redox C) et le 1,3-diisopropylimidazolidine-2-thione et son disulfure (couple redox D). La quantité de forme réduite par rapport à celle de la forme oxydée (rapport Red :Ox) a été optimisée dans deux solvants, soit le mélange éthylène carbonate-diméthyle carbonate (EC-DMC) contenant un sel support et le liquide ionique bis(tritluorométhylsulfonyl)imide de 1-éthyl-3méthylimidazolium (EMITFSI). À température ambiante, il a été démontré que les densités de courant de pics anodique et cathodique associées aux milieux électrolytiques préparés dans le mélange de solvants EC-DMC avec sel support sont plus élevées que celles associées aux milieux à base de EMITFSI. La viscosité importante du EMITFSI est probablement responsable des moins bonnes densités de courant observées. À température ambiante, un solvant peu visqueux, comme le mélange EC-DMC, donne des milieux électrolytiques plus conducteurs. Par contre, en augmentant la température du milieu, c'est plutôt un solvant possédant une faible pression de vapeur (EMITFSI) qui donne les conductivités ioniques les plus grandes. Dans ce travail, la contribution du solvant aux valeurs de conductivité des milieux électrolytiques est très importante. Les analyses ont montré que, même si la viscosité du liquide ionique EMITFSI (~ 15 cP à 55 °C) diminue grandement lorsque la température augmente, elle reste toujours supérieure à celle du mélange EC-DMC (~ 1 cP à 55 °C). Les caractérisations électrochimiques indiquent que la différence de potentiel entre les pics cathodique et anodique augmente en passant du couple A au couple D dans un même solvant (augmentation de volume des molécules redox), sauf pour ce dernier dans EMITFSI qui montre une valeur inférieure à celle du couple A. Par ailleurs, les densités de courants de pics sont plus faibles pour le couple D, et ce, dans les deux solvants étudiés, démontrant encore une fois l'effet d'espèces redox plus volumineuses (encombrement stérique accru) sur la cinétique des réactions d'oxydation et de réduction. Pour tous les couples redox, il a été observé que la réaction de réduction est beaucoup plus difficile que la réaction d'oxydation. Ce travail a montré que le couple redox A est globalement le plus intéressant puisqu'il présente des résultats similaires aux autres couples redox (sauf D), et ce, même s'il est deux fois moins concentré.
Des gels électrolytiques ont été préparés en incorporant les solutions optimales dans 5 % à 12,5 % de poly(difluorure de vinylidène), PVdF. Le but était d'obtenir un gel qui ne soit pas trop dur ni trop mou. Les résultats électrochimiques des gels à base de EMITFSI sont généralement similaires à ceux des solutions électrolytiques correspondantes. Cela suggère que la matrice polymérique agit comme une cage, et ne sert qu'au bon maintien mécanique du milieu électrolytique, sans qu'il n'y ait d'interactions entre le polymère et le solvant et/ou le couple redox. Toutefois, ces gels se liquéfient à partir d'une température de 40 °C. L'emploi d'un copolymère ramifié, comme le poly(difluorure de vinylidène)-hexafluoropropylène
ou PVdF-HFP, induit des propriétés électrochimiques qui sont moins intéressantes, suggérant que le copolymère interagit avec le solvant et/ou le couple redox. La voltampérométrie cyclique a permis de proposer que la réaction d'oxydation des thiourées cycliques suit un mécanisme EC (électrochimique-chimique) alors que la réaction de réduction des disulfures suivrait plutôt un mécanisme ECE (électrochimique-chimique-électrochimique). ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Cellule photovoltaïque électrochimique (CPE), pile solaire, couple redox, milieu électrolytique, voltampérométrie cyclique, électrochimie.

Identiferoai:union.ndltd.org:LACETR/oai:collectionscanada.gc.ca:QMUQ.3213
Date January 2006
CreatorsCorreia Ledo, Debby
Source SetsLibrary and Archives Canada ETDs Repository / Centre d'archives des thèses électroniques de Bibliothèque et Archives Canada
Detected LanguageFrench
TypeMémoire accepté, NonPeerReviewed
Formatapplication/pdf
Relationhttp://www.archipel.uqam.ca/3213/

Page generated in 0.0026 seconds