• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modèle optoélectronique pour la conception de piles solaires à semiconducteur.

Suau, Jean-Claude, January 1900 (has links)
Th. 3e cycle--Électronique, électrotech., autom.--Toulouse 3, 1977. N°: 1966.
2

Étude de nouveaux mélanges électrolytiques à base d'ylures de phosphore ou de phosphines avec leurs sels de phosphonium pour application en pile solaire

Hébert, Mathieu January 2007 (has links) (PDF)
Les ylures de phosphore, employés comme catalyseur latent dans plusieurs réactions, trouvent aussi des applications dans des réactions d'intérêt biologique. Par exemple, leur utilisation dans des réactions de Wittig permet de synthétiser la vitamine A et d'autres caroténoïdes. Récemment, les ylures ont même été employés dans la réaction de Mitsunobu afin de remplacer le diéthylazodicarboxylate (DEAD). Le groupe du Professeur Benoît Marsan à l'UQÀM, qui développe depuis plusieurs années une cellule photovoltaïque électrochimique (CPE), s'est penché sur la réactivité des ylures de phosphore. Il a déjà été démontré, par voltampérométrie cyclique (VC), que la réduction électrochimique de certains sels de phosphonium mène à la formation de leur ylure correspondant. Ces comportements permettent de croire qu'il serait possible d'élaborer des couples redox organiques à partir de mélanges électrolytiques composés d'ylures de phosphore et de leur sel de phosphonium correspondant. La conception de nouveaux couples redox pour les CPEs et les cellules sensibilisées par un colorant, ou mieux connues sous le nom de piles de "type Gratzel", doit permettre l'amélioration de plusieurs points. Deux des principaux problèmes sont la faible conductivité ionique ainsi que la trop forte absorption de la lumière visible (empêchant celle-ci de se rendre à l'électrode photoactive) par le milieu électrolytique qui constitue l'une des composantes de la pile solaire qui limite son rendement de conversion d'énergie. Le système électrolytique ylure/sel pourrait grandement améliorer la conductivité ionique du milieu électrolytique, considérant la possibilité d'un échange de proton entre le sel et l'ylure, dont le mécanisme de migration de charges serait alors analogue au mécanisme de Grotthus dans l'eau. Dans le cadre de ce projet de maîtrise, des mélanges électrolytiques basés sur des ylures de phosphore (Ph₃PCHCN, Me₃PCHCN et Et₃PCHCN) en présence de leur sel de phosphonium correspondant ont été étudiés et comparés à des mélanges électrolytiques composés de phosphines (Ph₃P et Ph₂PCN), elles aussi en présence de leur sel de phosphonium. Tout d'abord, les ylures, les phosphines et les sels ont été synthétisés puis caractérisés chimiquement par spectroscopie RMN proton et phosphore. Par la suite, des mélanges ylure/sel et phosphine/sel de quelques compositions (rapports ylure ou phosphine/sel) ont été réalisés dans les solvants suivants: acétonitrile, éthylène carbonate-diméthylcarbonate en rapport molaire 1: 1 (EC-DMC) et le sel fondu à température ambiante bi((trifluorométhyl)sulfonyl)imide de 1-éthyl-3-méthylimidazolium (EMITFSI). Les résultats obtenus par spectroscopie d'impédance montrent que ces systèmes sont bien conducteurs (> 1 mS cm­­¯¹). Ces systèmes se sont avérés chimiquement et électrochimiquement stables sur une plage de température comprise entre 293 K et 353 K, en plus de présenter une faible coloration. Toutes ces propriétés sont recherchées pour améliorer la performance des systèmes électrolytiques, des CPEs et des piles de "type Grätzel". Les mesures de conductivité et de viscosité, ainsi que des expériences RMN ³¹p, ont permis de mieux comprendre les propriétés électrochimiques observées par VC. Cependant, il a aussi été démontré, par VC, que ces systèmes sont caractérisés par un mécanisme réactionnel irréversible ne permettant pas l'utilisation de ces mélanges en tant que couples redox. De plus, un mécanisme réactionnel associé aux réactions d'oxydation et de réduction observées par VC a été proposé dans ce travail. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Voltampérométrie cyclique, Ylures de phosphore, Conductivité, Piles solaires.
3

Nouveaux milieux électrolytiques à base de thiourées cycliques ainsi que leurs disulfures pour application en cellule photovoltaïque électrochimique

Correia Ledo, Debby January 2006 (has links) (PDF)
Avec les problèmes environnementaux de plus en plus importants et la hausse de la demande en produits dérivés du pétrole qui a contribué, entre autres, à l'augmentation du prix de l'essence (loi de l'offre et de la demande), il est important d'explorer d'autres sources d'énergie. Dans notre laboratoire, la conversion de l'énergie solaire en énergie électrique via un effet photovoltaïque attire particulièrement notre attention. L'objectif principal de ce projet est l'étude de milieux électrolytiques liquides ou gels contenant un couple redox dont la forme réduite est une thiourée cyclique avec, en positions 1 et 3, un groupement électrodonneur (CH₃, CH₂CH₃ ou CH(CH₃)₃); la forme oxydée est le disulfure correspondant. Les propriétés électrochimiques, électriques et rhéologiques de ces milieux permettent de suggérer celui qui serait le plus approprié pour une application dans une cellule photovoltaïque électrochimique. En modifiant la nature du substituant en positions 1 et 3, quatre couples redox ont été étudiés, soit le 1,3-diméthylimidazolidine-2-thione et son disulfure (couple redox A), le 1,3-diéthylimidazolidine-2-thione et son disulfure (couple redox B), le 1-éthyl-3-méthylimidazolidine-2-thione et son disulfure (couple redox C) et le 1,3-diisopropylimidazolidine-2-thione et son disulfure (couple redox D). La quantité de forme réduite par rapport à celle de la forme oxydée (rapport Red :Ox) a été optimisée dans deux solvants, soit le mélange éthylène carbonate-diméthyle carbonate (EC-DMC) contenant un sel support et le liquide ionique bis(tritluorométhylsulfonyl)imide de 1-éthyl-3méthylimidazolium (EMITFSI). À température ambiante, il a été démontré que les densités de courant de pics anodique et cathodique associées aux milieux électrolytiques préparés dans le mélange de solvants EC-DMC avec sel support sont plus élevées que celles associées aux milieux à base de EMITFSI. La viscosité importante du EMITFSI est probablement responsable des moins bonnes densités de courant observées. À température ambiante, un solvant peu visqueux, comme le mélange EC-DMC, donne des milieux électrolytiques plus conducteurs. Par contre, en augmentant la température du milieu, c'est plutôt un solvant possédant une faible pression de vapeur (EMITFSI) qui donne les conductivités ioniques les plus grandes. Dans ce travail, la contribution du solvant aux valeurs de conductivité des milieux électrolytiques est très importante. Les analyses ont montré que, même si la viscosité du liquide ionique EMITFSI (~ 15 cP à 55 °C) diminue grandement lorsque la température augmente, elle reste toujours supérieure à celle du mélange EC-DMC (~ 1 cP à 55 °C). Les caractérisations électrochimiques indiquent que la différence de potentiel entre les pics cathodique et anodique augmente en passant du couple A au couple D dans un même solvant (augmentation de volume des molécules redox), sauf pour ce dernier dans EMITFSI qui montre une valeur inférieure à celle du couple A. Par ailleurs, les densités de courants de pics sont plus faibles pour le couple D, et ce, dans les deux solvants étudiés, démontrant encore une fois l'effet d'espèces redox plus volumineuses (encombrement stérique accru) sur la cinétique des réactions d'oxydation et de réduction. Pour tous les couples redox, il a été observé que la réaction de réduction est beaucoup plus difficile que la réaction d'oxydation. Ce travail a montré que le couple redox A est globalement le plus intéressant puisqu'il présente des résultats similaires aux autres couples redox (sauf D), et ce, même s'il est deux fois moins concentré. Des gels électrolytiques ont été préparés en incorporant les solutions optimales dans 5 % à 12,5 % de poly(difluorure de vinylidène), PVdF. Le but était d'obtenir un gel qui ne soit pas trop dur ni trop mou. Les résultats électrochimiques des gels à base de EMITFSI sont généralement similaires à ceux des solutions électrolytiques correspondantes. Cela suggère que la matrice polymérique agit comme une cage, et ne sert qu'au bon maintien mécanique du milieu électrolytique, sans qu'il n'y ait d'interactions entre le polymère et le solvant et/ou le couple redox. Toutefois, ces gels se liquéfient à partir d'une température de 40 °C. L'emploi d'un copolymère ramifié, comme le poly(difluorure de vinylidène)-hexafluoropropylène ou PVdF-HFP, induit des propriétés électrochimiques qui sont moins intéressantes, suggérant que le copolymère interagit avec le solvant et/ou le couple redox. La voltampérométrie cyclique a permis de proposer que la réaction d'oxydation des thiourées cycliques suit un mécanisme EC (électrochimique-chimique) alors que la réaction de réduction des disulfures suivrait plutôt un mécanisme ECE (électrochimique-chimique-électrochimique). ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Cellule photovoltaïque électrochimique (CPE), pile solaire, couple redox, milieu électrolytique, voltampérométrie cyclique, électrochimie.
4

Synthèse et étude d'un nouveau couple redox thiolate/disulfure dérivé du 4-cyanobenzènethiol pour une application en pile solaire

Chamberland, Nathalie January 2010 (has links) (PDF)
La demande énergétique mondiale sans cesse croissante pousse au développement d'autres sources d'énergie, de préférence durables, encouragé par nos gouvemements. Les cellules photovoltaïques à jonction p-n au silicium permettent de convertir directement l'énergie solaire en électricité. En raison du coût élevé de ce type de dispositif, notre laboratoire travaille à la conception d'une cellule photovoltaïque électrochimique, utilisant des films minces, dont la configuration est n-CulnS₂ couple redox thiolate/disulfure incorporé dans un gel verre | conducteur (lTO)-CoS. Pour optimiser la performance de la cellule, un couple redox ayant une structure aromatique, quasi-transparent en solution et possédant de bonnes propriétés électrochimiques est recherché. La synthèse de deux nouvelles espèces thiolates (forme réduite), soit le 4-cyanobenzènethiolate de potassium et celui de tétraméthylammonium, a été mise au point. Chaque thiolate a été mélangé avec la forme disulfure (espèce oxydée), également synthétisée dans notre laboratoire, pour former les couples redox respectifs A et B. La conductivité ionique, la viscosité, les propriétés électrochimiques et optiques des couples redox ont été étudiées dans deux milieux, soit le mélange de solvants DMF/DMSO: 60/40 (v/v) contenant 200 mM du sel support perchlorate de tétrabutylammonium (PTBA) (milieu 1) et le liquide ionique bis(trifluorométhylsulfonyl)imidure de l-éthyl-3-méthylimidazolium (EMlTFSI) (milieu 2). Chaque espèce a été caractérisée par spectroscopie RMN ¹H, ¹³C et IRTF. La voltampérométrie cyclique à une électrode de platine a permis d'optimiser les rapports molaires forme réduite:forme oxydée (Red:Ox) et les concentrations. Pour les milieux électrolytiques contenant le couple A, le rapport Red:Ox optimal est de 1:1 à une concentration totale de 500 mM dans le milieu 1, alors que cette concentration est doublée à 1 M en utilisant le couple B, avec le même rapport Red:Ox, ce qui permet d'obtenir des densités de courant et des conductivités beaucoup plus grandes du milieu électrolytique. Dans le milieu 2, les milieux électrolytiques préparés avec le couple A montrent un rapport Red:Ox optimal de 1: 1 avec une concentration totale de 20 mM. En utilisant le couple B, la concentration totale atteint 70 mM et le rapport Red:Ox a été optimisé à 3: 1. La catalyse des processus électrochimiques est supérieure sur une électrode de carbone vitreux comparée à une électrode de platine. L'ajout du groupement CN en para du cycle aromatique à six atomes de carbone, pour la forme thiolate, permet d'augmenter le potentiel standard apparent (E0=0,17 V vs ENH comparé à -0,24 V sans CN), indicateur d'un rendement accru de la pile solaire utilisant un semi-conducteur de type n, mais non la réversibilité. Des gels électrolytiques ont aussi été préparés en incorporant, aux solutions jugées optimales, 20% massique de poly(difluorure de vinylidène) (PVDF) aux électrolytes du milieu 1 et 7% à ceux préparés dans le milieu 2. Ces gels ont permis d'obtenir généralement des propriétés électrochimiques supérieures en densité de courant à celles des électrolytes liquides correspondants. Les mesures de résistance ont permis de constater une baisse de la conductivité des gels par rapport aux milieux liquides correspondants. La viscosité accrue des gels affecte le coefficient de diffusion des espèces électroactives. Le PVDF étant un polymère incolore, les gels électrolytiques possèdent les mêmes propriétés optiques que celles des milieux liquides. Le remplacement du groupement NO₂ par un CN en para du cycle aromatique a permis de diminuer la coloration des électrolytes. Les milieux électrolytiques contenant les couples redox ont une légère coloration jaunâtre translucide comparée aux milieux électrolytiques contenant le couple 4-nitrobenzènethiolate de potassium et sa forme disulfure, qui sont d'un rouge très foncé et opaque. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : 4-cyanobenzènethiolate, Disulfure de 4-cyanophényle, Cellule photovoltaïque électrochimique (CPE), Gel redox, Voltampérométrie cyclique.
5

Étude de systèmes électrolytiques à base de thiourées en milieu liquide ionique pour application dans une cellule photovoltaïque électrochimique

Essiembre, Sylvain January 2005 (has links) (PDF)
Les cellules photovoltaïques électrochimiques (CPE) ont besoin d'un milieu électrolytique transparent à la lumière, qui ne montre pas de fuite de solvant sous forme vapeur et doté de bonnes propriétés électrochimiques dans la plage de températures d'utilisation. La performance des CPE dépend de la minimisation des pertes d'énergie en surtensions anodique et cathodique (∆Eр), ainsi que d'une densité de courant (J) et d'un photovoltage élevés. Les mélanges de cinq couples rédox (CR) étudiés, composés principalement de thiourées et de leur disulfure doublement chargé en présence du liquide ionique EMI-TFSI, laissent passer les photons jusqu'à 3,2 eV et pourraient être utilisés avec une anode semi-conductrice de bande interdite optimale de ≈1,5 eV. Pour le développement de thiourées ou de disulfures liquides, deux corrélations au volume équivalent ont été établies pour les températures de transition vitreuse (Tg) et de fusion (Tf). Deux thiourées liquides ont été développées (1-diéthyl-3-diméthylthiourée, C (Tf : -7°C) et 1,3-bis(éthylméthyl)thiourée, E (Tf : 11°C)) et permettent d'autosolvater le CR sans solvant ou d'augmenter la proportion du CR en solution et le photocourant (Jph). L'anion TFSI (trifluorométhanesulfonylimide), plastifiant pour les cations monochargés, ne diminue pas la Tf des disulfures étudiés : les deux gros anions TFSI semblent s'insérer entre les disulfures sans en perturber la structure. Pour les systèmes électrolytiques (SE), les thiourées liquides, présentant une bonne pression de vapeur, doivent être utilisées avec un liquide ionique (non-volatil, par exemple EMI-TFSI : Éthylméthylimidazolium-TFSI) dont le pourcentage molaire choisi est un compromis entre une plus grande densité de courant (faible pourcentage) et un plus faible ∆Ep (fort pourcentage). Le solvant le plus visqueux du SE (thiourée ou liquide ionique) contrôle la viscosité et la conductance équivalente. Dues probablement à la formation de complexes de transfert de charge entre les espèces réduite et oxydée, de grandes attractions intermoléculaires sont présentes (écart à l'idéalité du volume molaire (Vm) des SE). Au-delà d'un seuil minimal de force ionique, les différences de viscosité, de Vm et de conductivité ionique des SE ne semblent induire aucune variation de ∆Ep. Les plus faibles valeurs de ∆Ep sont obtenues à 4,5% molaire en disulfure, entre 84% et 97% molaire en liquide ionique, pour tous les CR, et de ces derniers, le couple 1,3diéthylimidazolidine-2-thione (I) / dithio bis(1,3-diéthylimidazolidinium) bisTFSI (J2+) présente le plus faible ∆Ep grâce à une plus faible surtension cathodique |nc|. L'accès de l'espèce oxydée à l'électrode de travail pourrait être à l'origine de la diffusion plus difficile pour les disulfures de thiourées non-cycliques. Ces disulfures présentant un coeur structurel identique jusqu'aux azotes diffèrent par leurs substituants, en rotation, sur les groupes aminos. Le ∆Ep similaire de I/J²⁺ à celui des CR CsT(5-mercapto-1-méthyltétrazolate de césium) / son disulfure (T2), et tétraméthylthiourée (A) / dithiobis(tétraméthylformamidinium) bis TFSI (B²⁺) en solvant organique (travaux antérieurs du laboratoire), pourrait probablement s'expliquer par l'absence de rotation des groupes aminos (T2) et la petite taille des substituants méthyles sur les groupes aminos pour B²⁺. Pour le SE à base de I/J²⁺ très dilué dans EMI-TFSI, le photovoltage maximal théorique de la CPE est prometteur et estimé à 1,32 V pour un semi-conducteur de CdSe. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Pile solaire, Thiourées, Conductivité, Viscosité, Produit de Walden, Voltampérométrie cyclique, Transition de phases.
6

Déposition galvanostatique du semi-conducteur CuInS2 sur un substrat de titane

Morin, Stéphanie January 2006 (has links) (PDF)
Une des sources d'énergie les plus abondantes est le soleil, d'où l'importance de développer des techniques efficaces pour convertir les rayons solaires en électricité. Plusieurs dispositifs peuvent être employés, dont les cellules photovoltaïques électrochimiques (CPE). Le fonctionnement de certains types de CPE repose sur une jonction entre un semi-conducteur de type n et un électrolyte gel. Le semi-conducteur, une des composantes majeures des CPE, peut être amélioré. Dans ce travail, il est question du développement d'une nouvelle méthode de préparation du semi-conducteur CulnS₂ en couche mince. Elle consiste à électrodéposer galvanostatiquement le film sur un substrat de titane. L'optimisation de la méthode inclut le choix du courant de déposition, de la méthode de recuit et du traitement chimique au KCN. Le courant de déposition a été optimisé à -40 mA, menant à des films homogènes possédant des pourcentages de CulnS₂ et de cristallinité intéressants. Un recuit sous vide à 425°C permet d'obtenir des films plus cristallins, pratiquement non-oxydés et plus purs. Enfin, un traitement chimique au KCN 0,25 M à température pièce pendant environ 10 secondes, qui permet de diminuer la quantité de cuivre dans les films, a donné les meilleurs résultats. La structure du CulnS₂ a été définie comme étant tétragonale chalcopyrite avec des paramètres de maille de 5,549 Å pour a et b, et de 11,02 Å pour c. Le facteur de rugosité moyen des films est de 19 avant traitement chimique et de 13 après traitement au KCN, avec une épaisseur moyenne de 4,2 µm. La valeur de la bande interdite a été déterminée à 1,51 eV, ce qui est comparable à la théorie. Pour les films ayant subi un traitement au KCN, une densité de porteurs de charge majoritaires de 3,8x10¹⁹ cm⁻³ a été calculée, ainsi qu'un potentiel de bandes plates de -0,45 V vs ENH. Deux piles de configuration n-CuInS₂ | PVdF (20% massique) / DMF/DMSO (60%/40% volumique), CsT 1,3 M/T₂ 0,13 M (80 % massique) | ITO ont été caractérisées dans l'obscurité. PVdF représente le polyvinylidène de fluor, CsT le 5-mercapto-1-méthyltétrazolate de césium et T₂ son disulfure. Une semi-conductivité de type n a été observée, comme attendue, avec un facteur de rectification de 2,82 (à 0,5 V) lorsque le CuInS₂ était traité au KCN. La densité de courant d'échange a été calculée à 2,7 µA/cm₂, la résistance shunt à 46 kΩ et la constante d'idéalité à 2,6 pour la même cellule. Les résultats montrent que les films ayant subi un traitement au KCN présentent une interface CulnS₂/électrolyte gel de meilleure qualité. Les films semi-conducteurs préparés dans ce projet semblent améliorer la qualité de cette interface par rapport aux films obtenus par électrodéposition potentiostatique. ______________________________________________________________________________ MOTS-CLÉS DE L’AUTEUR : Semi-conducteur, CuInS₂, pile solaire, électrodéposition galvanostatique.

Page generated in 0.0654 seconds