Ce manuscrit propose de nouvelles méthodes d’estimation robustes pour les fonctions matricielles d’autocovariance et d’autocorrélation de séries chronologiques multivariées stationnaires pouvant présenter des valeurs aberrantes aléatoires additives. Ces fonctions jouent un rôle important dans l’identification et l’estimation des paramètres de modèles de séries chronologiques multivariées stationnaires. Nous proposons tout d'abord de nouveaux estimateurs des fonctions matricielles d’autocovariance et d’autocorrélation construits en utilisant une approche spectrale à l'aide du périodogramme matriciel. Comme dans le cas des estimateurs classiques des fonctions d’autocovariance et d’autocorrélation matricielles, ces estimateurs sont affectés par des observations aberrantes. Ainsi, toute procédure d'identification ou d'estimation les utilisant est directement affectée, ce qui entraîne des conclusions erronées. Pour atténuer ce problème, nous proposons l’utilisation de techniques statistiques robustes pour créer des estimateurs résistants aux observations aléatoires aberrantes. Dans un premier temps, nous proposons de nouveaux estimateurs des fonctions d’autocorvariance et d’autocorrélation de séries chronologiques univariées. Les domaines temporel et fréquentiel sont liés par la relation existant entre la fonction d’autocovariance et la densité spectrale. Le périodogramme étant sensible aux données aberrantes, nous obtenons un estimateur robuste en le remplaçant parle $M$-périodogramme. Les propriétés asymptotiques des estimateurs sont établies. Leurs performances sont étudiées au moyen de simulations numériques pour différentes tailles d’échantillons et différents scénarios de contamination. Les résultats empiriques indiquent que les méthodes proposées fournissent des valeurs proches de celles obtenues par la fonction d'autocorrélation classique quand les données ne sont pas contaminées et resistent à différents cénarios de contamination. Ainsi, les estimateurs proposés dans cette thèse sont des méthodes alternatives utilisables pour des séries chronologiques présentant ou non des valeurs aberrantes. Les estimateurs obtenus pour des séries chronologiques univariées sont ensuite étendus au cas de séries multivariées. Cette extension est simplifiée par le fait que le calcul du périodogramme croisé ne fait intervenir que les coefficients de Fourier de chaque composante de la série. Le $M$-périodogramme matriciel apparaît alors comme une alternative robuste au périodogramme matriciel pour construire des estimateurs robustes des fonctions matricielles d’autocovariance et d’autocorrélation. Les propriétés asymptotiques sont étudiées et des expériences numériques sont réalisées. Comme exemple d'application avec des données réelles, nous utilisons les fonctions proposées pour ajuster un modèle autoregressif par la méthode de Yule-Walker à des données de pollution collectées dans la région de Vitória au Brésil.Enfin, l'estimation robuste du nombre de facteurs dans les modèles factoriels de grande dimension est considérée afin de réduire la dimensionnalité. En présence de valeurs aberrantes, les critères d’information proposés par Bai & Ng (2002) tendent à surestimer le nombre de facteurs. Pour atténuer ce problème, nous proposons de remplacer la matrice de covariance standard par la matrice de covariance robuste proposée dans ce manuscrit. Nos simulations montrent qu'en l'absence de contamination, les méthodes standards et robustes sont équivalentes. En présence d'observations aberrantes, le nombre de facteurs estimés augmente avec les méthodes non robustes alors qu'il reste le même en utilisant les méthodes robustes. À titre d'application avec des données réelles, nous étudions des concentrations de polluant PM$_{10}$ mesurées dans la région de l'Île-de-France en France. / This manuscript proposes new robust estimation methods for the autocovariance and autocorrelation matrices functions of stationary multivariates time series that may have random additives outliers. These functions play an important role in the identification and estimation of time series model parameters. We first propose new estimators of the autocovariance and of autocorrelation matrices functions constructed using a spectral approach considering the periodogram matrix periodogram which is the natural estimator of the spectral density matrix. As in the case of the classic autocovariance and autocorrelation matrices functions estimators, these estimators are affected by aberrant observations. Thus, any identification or estimation procedure using them is directly affected, which leads to erroneous conclusions. To mitigate this problem, we propose the use of robust statistical techniques to create estimators resistant to aberrant random observations.As a first step, we propose new estimators of autocovariance and autocorrelation functions of univariate time series. The time and frequency domains are linked by the relationship between the autocovariance function and the spectral density. As the periodogram is sensitive to aberrant data, we get a robust estimator by replacing it with the $M$-periodogram. The $M$-periodogram is obtained by replacing the Fourier coefficients related to periodogram calculated by the standard least squares regression with the ones calculated by the $M$-robust regression. The asymptotic properties of estimators are established. Their performances are studied by means of numerical simulations for different sample sizes and different scenarios of contamination. The empirical results indicate that the proposed methods provide close values of those obtained by the classical autocorrelation function when the data is not contaminated and it is resistant to different contamination scenarios. Thus, the estimators proposed in this thesis are alternative methods that can be used for time series with or without outliers.The estimators obtained for univariate time series are then extended to the case of multivariate series. This extension is simplified by the fact that the calculation of the cross-periodogram only involves the Fourier coefficients of each component from the univariate series. Thus, the $M$-periodogram matrix is a robust periodogram matrix alternative to build robust estimators of the autocovariance and autocorrelation matrices functions. The asymptotic properties are studied and numerical experiments are performed. As an example of an application with real data, we use the proposed functions to adjust an autoregressive model by the Yule-Walker method to Pollution data collected in the Vitória region Brazil.Finally, the robust estimation of the number of factors in large factorial models is considered in order to reduce the dimensionality. It is well known that the values random additive outliers affect the covariance and correlation matrices and the techniques that depend on the calculation of their eigenvalues and eigenvectors, such as the analysis principal components and the factor analysis, are affected. Thus, in the presence of outliers, the information criteria proposed by Bai & Ng (2002) tend to overestimate the number of factors. To alleviate this problem, we propose to replace the standard covariance matrix with the robust covariance matrix proposed in this manuscript. Our Monte Carlo simulations show that, in the absence of contamination, the standard and robust methods are equivalent. In the presence of outliers, the number of estimated factors increases with the non-robust methods while it remains the same using robust methods. As an application with real data, we study pollutant concentrations PM$_{10}$ measured in the Île-de-France region of France. / Este manuscrito é centrado em propor novos métodos de estimaçao das funçoes de autocovariancia e autocorrelaçao matriciais de séries temporais multivariadas com e sem presença de observaçoes discrepantes aleatorias. As funçoes de autocovariancia e autocorrelaçao matriciais desempenham um papel importante na analise e na estimaçao dos parametros de modelos de série temporal multivariadas. Primeiramente, nos propomos novos estimadores dessas funçoes matriciais construıdas, considerando a abordagem do dominio da frequencia por meio do periodograma matricial, um estimador natural da matriz de densidade espectral. Como no caso dos estimadores tradicionais das funçoes de autocovariancia e autocorrelaçao matriciais, os nossos estimadores tambem sao afetados pelas observaçoes discrepantes. Assim, qualquer analise subsequente que os utilize é diretamente afetada causando conclusoes equivocadas. Para mitigar esse problema, nos propomos a utilizaçao de técnicas de estatistica robusta para a criaçao de estimadores resistentes as observaçoes discrepantes aleatorias. Inicialmente, nos propomos novos estimadores das funçoes de autocovariancia e autocorrelaçao de séries temporais univariadas considerando a conexao entre o dominio do tempo e da frequencia por meio da relaçao entre a funçao de autocovariancia e a densidade espectral, do qual o periodograma tradicional é o estimador natural. Esse estimador é sensivel as observaçoes discrepantes. Assim, a robustez é atingida considerando a utilizaçao do Mperiodograma. O M-periodograma é obtido substituindo a regressao por minimos quadrados com a M-regressao no calculo das estimativas dos coeficientes de Fourier relacionados ao periodograma. As propriedades assintoticas dos estimadores sao estabelecidas. Para diferentes tamanhos de amostras e cenarios de contaminaçao, a performance dos estimadores é investigada. Os resultados empiricos indicam que os métodos propostos provem resultados acurados. Isto é, os métodos propostos obtêm valores proximos aos da funçao de autocorrelaçao tradicional no contexto de nao contaminaçao dos dados. Quando ha contaminaçao, os M-estimadores permanecem inalterados. Deste modo, as funçoes de M-autocovariancia e de M-autocorrelaçao propostas nesta tese sao alternativas vi aveis para séries temporais com e sem observaçoes discrepantes. A boa performance dos estimadores para o cenario de séries temporais univariadas motivou a extensao para o contexto de séries temporais multivariadas. Essa extensao é direta, haja vista que somente os coeficientes de Fourier relativos à cada uma das séries univariadas sao necessarios para o calculo do periodograma cruzado. Novamente, a relaçao de dualidade entre o dominio da frequência e do tempo é explorada por meio da conexao entre a funçao matricial de autocovariancia e a matriz de densidade espectral de séries temporais multivariadas. É neste sentido que, o presente artigo propoe a matriz M-periodograma como um substituto robusto à matriz periodograma tradicional na criaçao de estimadores das funçoes matriciais de autocovariancia e autocorrelaçao. As propriedades assintoticas sao estudas e experimentos numéricos sao realizados. Como exemplo de aplicaçao à dados reais, nos aplicamos as funçoes propostas no artigo na estimaçao dos parâmetros do modelo de série temporal multivariada pelo método de Yule-Walker para a modelagem dos dados MP10 da regiao de Vitoria/Brasil. Finalmente, a estimaçao robusta dos numeros de fatores em modelos fatoriais aproximados de alta dimensao é considerada com o objetivo de reduzir a dimensionalidade. Ésabido que dados discrepantes afetam as matrizes de covariancia e correlaçao. Em adiçao, técnicas que dependem do calculo dos autovalores e autovetores dessas matrizes, como a analise de componentes principais e a analise fatorial, sao completamente afetadas. Assim, na presença de observaçoes discrepantes, o critério de informaçao proposto por Bai & Ng (2002) tende a superestimar o numero de fatores. [...]
Identifer | oai:union.ndltd.org:theses.fr/2019SACLC064 |
Date | 22 August 2019 |
Creators | Aranda Cotta, Higor Henrique |
Contributors | Université Paris-Saclay (ComUE), Universidade Federal do Espírito Santo (Vitória, Brésil), Bondon, Pascal, Reisen, Valdério Anselmo |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0027 seconds