Return to search

On the solution of the radical matrix equation $X=Q+LX^{-1}L^T$

We study numerical methods for finding the maximal
symmetric positive definite solution of the nonlinear matrix equation
$X = Q + LX^{-1}L^T$, where Q is symmetric positive definite and L is
nonsingular. Such equations arise for instance in the analysis of
stationary Gaussian reciprocal processes over a finite interval.
Its unique largest positive definite solution coincides with the unique
positive definite solution of a related discrete-time algebraic
Riccati equation (DARE). We discuss how to use the butterfly
SZ algorithm to solve the DARE. This approach is compared to
several fixed point type iterative methods suggested in the
literature.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:ch1-200701929
Date26 November 2007
CreatorsBenner, Peter, Faßbender, Heike
ContributorsTU Chemnitz, Fakultät für Mathematik
PublisherUniversitätsbibliothek Chemnitz
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
LanguageEnglish
Detected LanguageEnglish
Typedoc-type:preprint
Formatapplication/pdf, text/plain, application/zip
RightsDokument ist für Print on Demand freigegeben
Relationdcterms:isPartOf:Chemnitz Scientific Computing Preprints ; 06-02

Page generated in 0.0021 seconds