Les cellules photovoltaïques en couches minces de silicium cristallin sont des candidates prometteuses pour les développements futurs de l’industrie photovoltaïque, au travers des réductions de coûts attendues et des applications dans les modules souples. Pour devenir compétitive, la filière des couches minces de silicium monocristallin doit se différencier des filières classiques. Elle est donc généralement basée sur l’épitaxie de couches de haute qualité puis sur le transfert de ces couches vers un support mécanique pour terminer la fabrication de la cellule et réutiliser le premier substrat de croissance. Le but de cette thèse est de trouver les associations technologiques qui permettent de réaliser des cellules photovoltaïques en couches minces et ultra-minces de silicium monocristallin à haut-rendement. Les travaux présentés s’articulent selon deux axes principaux : le développement et la maîtrise de procédés technologiques pour la fabrication de cellules solaires en couches minces et l’optimisation des architectures de cellules minces haut-rendement.Dans ce cadre de travail, les développements des techniques de fabrication ont d’abord concerné la mise au point de procédés de transfert de couches minces : une technologie basse température de soudage laser et un soudage par recuit rapide haute température. Afin d’augmenter le rendement de conversion, nous avons développé des structurations de surface utilisant les concepts de la nano-photonique pour améliorer le pouvoir absorbant des couches minces. Avec une lithographie interférentielle à 266 nm et des gravures sèches par RIE et humides par TMAH (Tetramethylammonium Hydroxide), nous pouvons réaliser des cristaux photoniques performants sur des couches épitaxiées de silicium. Finalement, nous avons pu concevoir des architectures optimisées de cellules solaires minces à homo-jonction de silicium et à hétéro-jonction silicium amorphe / silicium cristallin plus performantes électriquement, grâce aux outils de simulation électro-optique. Notre approche théorique nous a aussi conduits à expliciter les phénomènes électriques propres aux couches minces, et à démontrer tout le potentiel des cellules photovoltaïques minces en silicium monocristallin. / Thin-film crystalline silicon solar cells are promising candidates for future developments in the photovoltaic industry, through expected costs reductions and applications in flexible modules. To be competitive, thin-film monocrystalline silicon solar cell technology must differentiate itself from conventional ones. It is generally based on the epitaxy of high-quality layers and then on the transfer of these layers onto a mechanical support to complete the manufacture of the cell and reuse the growth substrate. The aim of this thesis is to find the technological associations that make it possible to realize high-efficiency photovoltaic cells from thin and ultra-thin layers of monocrystalline silicon. The work presented focuses on two main axes: the development and control of technological processes for the fabrication of thin-film solar cells and the optimization of high-performance thin-cell architectures.In this framework, the development of manufacturing techniques began with the development of thin-film transfer processes: low temperature laser welding technology and high temperature fast annealing welding technology. In order to increase conversion efficiency, we have developed surface patterns using the nano-photonics concepts to improve the absorbency of thin films. With an interferential lithography at 266 nm and dry etching by RIE and wet etching by TMAH (Tetramethylammonium Hydroxide), we can produce high-performance photonic crystals on epitaxial layers of silicon. Finally, we were able to design optimized architectures of thin solar cells with homo-junction of silicon and hetero-junction amorphous silicon / crystalline silicon more efficient electrically, thanks to electro-optical simulation tools. Our theoretical approach has also led us to explain the electrical phenomena specific to thin films, and to demonstrate the full potential of thin photovoltaic cells made of monocrystalline silicon.
Identifer | oai:union.ndltd.org:theses.fr/2016LYSEC057 |
Date | 13 December 2016 |
Creators | Champory, Romain |
Contributors | Lyon, Seassal, Christian, Mandorlo, Fabien, Fave, Alain |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0032 seconds